K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Dễ thấy \(x=2017\)không là nghiệm của phương trình.

Ta có:

\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)

Đặt \(\frac{x-2018}{2017-x}=a\)

\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)

\(\Leftrightarrow24a^2+50a+24=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

\(\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(=\sqrt{(1+2017)^2-2.2017+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(\sqrt{2018^2-2.2018.\frac{2017}{2018}+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(=\sqrt{(2018-\frac{2017}{2018})^2}+\frac{2017}{2018}=2018-\frac{2017}{2018}+\frac{2017}{2018}=2018\)

11 tháng 9 2019

Đặt \(2017=a\)

=>\(2018=a+1\)

Với mọi \(a\in N\) có:\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{a^2+2a+1+a^2\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{2a^2+2a+1+a^4+2a^3+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a^4+2a^2+1\right)+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}\)

=\(\sqrt{\frac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a^2+a+1\right)}{\left(a+1\right)^2}}=\left|\frac{a^2+a+1}{a+1}\right|\)(do \(a\ge0\))

=\(\frac{a\left(a+1\right)+1}{a+1}=a+\frac{1}{a+1}\)

=> \(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=a+\frac{1}{a+1}\)

Thay a=2017 có:

\(\sqrt{1+2017^2+\left(\frac{2017}{2018}\right)^2}=2017+\frac{1}{2017+1}=2017+\frac{1}{2018}\)

=>\(\sqrt{1+22017^2+\left(\frac{2017}{2018}\right)^2}+\frac{2017}{2018}=2017+\frac{1}{2018}+\frac{2017}{2018}\)

<=> M=2017+1=2018

Vậy M=2018

Vũ Minh Tuấn Lê Thị Thục Hiền @No choice teen

2 tháng 9 2017

\(\sqrt{1+a^2+\left(\frac{a}{a+1}\right)^2}\)=\(\sqrt{\frac{\left(a+1\right)^2+a^2.\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}\) =\(\sqrt{\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{\left(a+1\right)^2}}\)

=\(\sqrt{\frac{a^4+2a^2.\left(a+1\right)+\left(a+1\right)^2}{\left(a+1\right)^2}}\) =\(\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}=\frac{a^2+a+1}{a+1}=\frac{a\left(a+1\right)+1}{a+1}=a+\frac{1}{a+1}\)

thay vao dau bai ta co 

\(2017+\frac{1}{2018}+\frac{2017}{2018}=2017+1=2018\)

31 tháng 3 2018

khó quá nhỉ