Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x-1}+\frac{6}{3x+5}=\frac{2}{x+2}+\frac{1}{x+3}\)
\(\Leftrightarrow\frac{3x+5+6x-6}{3x^2+2x-5}=\frac{2x+6+x+2}{x^2+5x+6}\)
\(\Leftrightarrow\frac{9x-1}{3x^2+2x-5}=\frac{3x+8}{x^2+5x+6}\)
\(\Rightarrow9x^3+44x^2+49x-6=9x^3+30x^2+x-40\)
\(\Leftrightarrow14x^2-48x+34=0\)
\(\Rightarrow14x^2-14x-34x+34=0\)
\(\Rightarrow\left(x-1\right)\left(14x-34\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\14x-34=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{17}{7}\end{cases}}}\)
Ngu nên làm dài dòng thôi
giải phương trình:\(\frac{x^2+x}{x^2+3}+\frac{3x^2-x+15}{x^2+4}+\frac{x^2+x+2}{x^2+5}+x^3-3x^2+1=0\)
1) Hình như đề bị sai rồi bạn.
Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)
Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)
Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)
2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)
pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)
\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)
Nhận thấy \(\Delta'=6^2-3.5=21>0\)
Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)
Ta có: \(\hept{\begin{cases}\frac{2}{3x-y}-\frac{5}{x-3y}=3\\\frac{1}{3x-y}+\frac{2}{x-3y}=\frac{3}{5}\end{cases}}\) (3)
Điều kiện \(3x-y\ne0,x-3y\ne0\)
Đặt \(u=\frac{1}{3x-y}\), \(v=\frac{1}{x-3y}\)
Ta được \(\left(3\right)\Leftrightarrow\hept{\begin{cases}2u-5v=3\\u+2v=\frac{3}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}u=1\\v=-\frac{1}{5}\end{cases}}}\)
Từ đó \(\hept{\begin{cases}3x-y=1\\x-3y=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\) (Thỏa mãn)
P/s: Mình không biết nó đúng hay sai. Nếu sai thì thông cảm cho mình nhé
bạn tham khảo thêm cách này nha Shonogeki No Soma
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)
Đặt \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)
pt đã cho đc viết lại thành
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\) (kí hiệu [..] mới đúng nha)
- TH1: a = -b hay \(\left(x-1\right)^3=-x^3\) \(\Leftrightarrow2x^3-3x^2+3x-1=0\) \(\Leftrightarrow x=\frac{1}{2}\) (Nhận)
- TH2: b = -c hay \(\left(x+1\right)^3=-x^3\) \(\Leftrightarrow2x^3+3x^2+3x+1=0\) \(\Leftrightarrow x=-\frac{1}{2}\) (Nhận)
- TH3: c = -a hay \(\left(x+1\right)^3=-\left(x-1\right)^3\) \(\Leftrightarrow x=0\) (Loại)
KL: \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)
\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)
a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)
Ta thấy x=0 không là nghiệm của PT
Xét \(x\ne0\)
Khi đó PT
<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)
Đặt \(2x+\frac{1}{x}=a\)
=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)
<=> \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)
<=> \(6a^3-44a^2-191a-45=0\)
Xin lỗi đến đây tớ ra nghiệm không đẹp
c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\) ĐKXĐ \(x\ne-3\)
<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)
<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)
<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)
<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)
\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ
\(\left(x^2-3x+2\right)\sqrt{\frac{x+3}{x-1}}=-\frac{x^3}{2}+\frac{15x}{2}-11\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\sqrt{\frac{x+3}{x-1}}=-\frac{1}{2}\left(x-2\right)\left(x^2+2x-11\right)\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-1\right)\sqrt{\frac{x+3}{x-1}}+\left(x^2+2x-11\right)\right]=0\)
Làm nốt
Vừa lm xong mt bị sụp ...
\(\frac{1}{x-1}+\frac{3}{3x+5}=\frac{2}{x+2}+\frac{1}{x+3}\)ĐKXĐ : \(x\ne1;-\frac{5}{3};-2;-3\)
\(\frac{1}{x-1}+\frac{3}{3x+5}-\frac{2}{x+2}-\frac{1}{x+3}=0\)
\(\frac{\left(3x+5\right)\left(x+2\right)\left(x+3\right)}{\left(x-1\right)\left(3x+5\right)\left(x+2\right)\left(x+3\right)}+\frac{3\left(x-1\right)\left(x+2\right)\left(x+3\right)}{\left(3x+5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}-\frac{2\left(x-1\right)\left(3x+5\right)\left(x+3\right)}{\left(x+2\right)\left(x-1\right)\left(3x-5\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(3x+5\right)\left(x+2\right)}{\left(x+3\right)\left(x-1\right)\left(3x+5\right)\left(x+2\right)}=0\)
Khử mẫu và rút gọn ta đc : \(-3x^3+2x^2+45x+52=0\)
Mời cao nhân giải tiếp.