Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 - B
\(2x-4=0\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
2 - B
QĐ | VT | TG |
\(10x\) | \(10\) | \(x\) |
\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)
d: \(\Leftrightarrow3x^2-6x-2x+4=0\)
=>(x-2)(3x-2)=0
=>x=2 hoặc x=2/3
e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)
=>x(x-3)(x+1)=0
hay \(x\in\left\{0;3;-1\right\}\)
f: \(\Leftrightarrow x^2-5x-2+x=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow\left(x-2\right)^2=6\)
hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)
*vn:vô nghiệm.
a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).
b. \(16x^2-8x+5=0\)
\(\Leftrightarrow16x^2-8x+1+4=0\)
\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)
-Vậy S=∅.
c. \(2x^3-x^2-8x+4=0\)
\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)
-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).
d. \(3x^3+6x^2-75x-150=0\)
\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)
-Vậy \(S=\left\{-2;\pm5\right\}\)
\(a,\Leftrightarrow\left(4-5x\right)\left(4+5x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1-2\right)\left(x+1+2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(3x+1-2x\right)\left(3x+1+2x\right)=0\\ \Leftrightarrow\left(x+1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{1}{5}\end{matrix}\right.\\ d,Sửa:\left(4x+1\right)^2-\left(x-2\right)^2=0\\ \Leftrightarrow\left(4x+1-x+2\right)\left(4x+1+x-2\right)=0\\ \Leftrightarrow\left(3x+3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{5}\end{matrix}\right.\\ e,\Leftrightarrow\left(2x+1-x-3\right)\left(2x+1+x+3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(\left(6x-3y\right)^2=36x^2-36xy+9y^2\)
\(2x^2y-10^2=2\left(x^2y-50\right)\)
\(9x^2-6x+1=\left(3x-1\right)^2\)
a, \(x^2-6x+9=\left(x-3\right)^2\)
b, \(x^2-12x+36=\left(x-4\right)^2\)
c, \(9x^2-25=\left(3x-5\right)\left(3x+5\right)\)
d, \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
e, \(x^4-8x^2+16=\left(x^2-4\right)^2=\left[\left(x-2\right)\left(x+2\right)\right]^2\)
f, \(x^4-81=\left(x^2-9\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
g, \(\left(4x+5\right)^2-\left(5x+4\right)^2=\left(4x+5-5x-4\right)\left(4x+5+5x+4\right)=9\left(1-x\right)\left(x+1\right)\)
h, \(\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(-x-2\right)^2\)
\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left(2x-3-x-2\right)^2=\left(x-5\right)^2\)
a, = (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4) = (x-1).(x-2)^2
b, = (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)
k mk nha
a)= (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4)
= (x-1).(x-2)^2
b)= (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ]
= (x+1).(x-2).(x-8)
P/s tham khảo nha
a: \(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
hay x=1/2
b: \(\Leftrightarrow\left(3x-1\right)^2=0\)
hay x=1/3
c: \(\Leftrightarrow\left(x+4\right)^2=0\)
hay x=-4
a) ⇒ \(\left(x-\dfrac{1}{2}\right)^2\)= 0
⇒ \(x-\dfrac{1}{2}=0\)
⇒ \(x=\dfrac{1}{2}\)
b) ⇒ \(\left(3x-1\right)^2=0\)
⇒ \(3x-1=0\)
⇒ \(3x=1\)
⇒ \(x=\dfrac{1}{3}\)
c) ⇒ \(\left(x+4\right)^2=0\)
⇒ \(x+4=0\)
⇒ \(x=-4\)