Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6-9x^5+30x^4-45x^3+30x^2-9x+1\)
\(=\left(x^2\right)^3-9x^5+30x^4-45x^3+30x^2-9x+1^3\)
\(=\left(x^3-3x+1\right)^3\)
Lời giải:
\(x^6-9x^5+30x^4-45x^3+30x^2-9x+1\)
\(=(x^2)^3-3.(x^2)^2.(3x)+3.x^2(3x)^2-(3x)^3+3x^4-18x^3+30x^2-9x+1\)
\(=(x^2-3x)^3+3x^4-18x^3+30x^2-9x+1\)
\(=(x^2-3x)^3+3(x^4-6x^3+9x^2)+3x^2-9x+1\)
\(=(x^2-3x)^3+3(x^2-3x)^2+3(x^2-3x)+1\)
\(=(x^2-3x+1)^3\)
a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)
\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)
b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P
Tự làm nốt nhé
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Lời giải:
a. $x^2-4x-5=0$
$\Leftrightarrow (x+1)(x-5)=0$
$\Leftrightarrow x+1=0$ hoặc $x-5=0$
$\Leftrightarrow x=-1$ hoặc $x=5$
b.
$5x^2-9x-2=0$
$\Leftrightarrow (x-2)(5x+1)=0$
$\Leftrightarrow x-2=0$ hoặc $5x+1=0$
$\Leftrightarrow x=2$ hoặc $x=\frac{-1}{5}$
c.
$(x^2+1)-5(x^2+1)+6=0$
$\Leftrightarrow a^2-5a+6=0$ (đặt $x^2+1=a$)
$\Leftrightarrow (a-2)(a-3)=0$
$\Leftrightarrow a-2=0$ hoặc $a-3=0$
$\Leftrightarrow x^2-1=0$ hoặc $x^2-2=0$
$\Leftrightarrow (x-1)(x+1)=0$ hoặc $(x-\sqrt{2})(x+\sqrt{2})=0$
$\Leftrightarrow x\in\left\{\pm 1; \pm \sqrt{2}\right\}$
d.
$(x^2+6x)-2(x+3)^2-17=0$
$\Leftrightarrow (x^2+6x+9)-2(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2-2(x+3)^2-26=0$
$\Leftrightarrow -(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2=-26<0$ (vô lý)
Do đó không tồn tại $x$ thỏa mãn.
\(\Leftrightarrow\left(x+5\right)^2-9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+5-9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
\(\left(x+5\right)^2-9x-45x=0\\ < =>\left(x^2+10x+25\right)-54x=0\\ < =>x^2+10x+25-54x=0\\ < =>x^2-44x+25=0\\ < =>\left(x^2-44x+484\right)-459=0\\ < =>\left(x-22\right)^2-459=0\\ < =>\left(x-22\right)^2=459\\ < =>\left[{}\begin{matrix}x-22=\sqrt{459}\\x-22=-\sqrt{459}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=22+\sqrt{459}\\x=22-\sqrt{459}\end{matrix}\right.\)