Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)
a) Ta có: \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x+5\right)\left(2x-1\right)-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow2x^2-x+10x-5-\left(2x^2+2x-3x-3\right)=0\)
\(\Leftrightarrow2x^2+9x-5-2x^2+x+3=0\)
\(\Leftrightarrow10x-2=0\)
hay 10x=2
\(\Leftrightarrow x=\frac{1}{5}\)
Vậy: \(x=\frac{1}{5}\)
b) Ta có: \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\)
\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)
\(\Leftrightarrow2x-6=0\)
hay 2x=6
\(\Leftrightarrow x=3\)
Vậy: x=3
c) Ta có: \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)
\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)
\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)
\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)
\(\Leftrightarrow33x-1=0\)
\(\Leftrightarrow33x=1\)
hay \(x=\frac{1}{33}\)
Vậy: \(x=\frac{1}{33}\)
d) Ta có: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)
\(\Leftrightarrow3x^2+5x-6x-10=2x^2+2x-4x-4\)
\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)
\(\Leftrightarrow3x^2-x-10-2x^2+2x+4=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
đ) Ta có: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)
e) Ta có: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)
Vì \(3\ne0\)
nên \(\left[{}\begin{matrix}x-4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4\right\}\)
a) $(x+5)(2x-1)=(2x-3)(x+1)$
$\Leftrightarrow 2x^2+9x-5=2x^2-x-3$
$\Leftrightarrow 10x=2\Rightarrow x=\frac{1}{5}$
b)
$(x+1)(x+9)=(x+3)(x+5)$
$\Leftrightarrow x^2+10x+9=x^2+8x+15$
$\Leftrightarrow 2x=6\Rightarrow x=3$
c)
$(3x+5)(2x+1)=(6x-2)(x-3)$
$\Leftrightarrow 6x^2+13x+5=6x^2-20x+6$
$\Leftrightarrow 33x=1\Rightarrow x=\frac{1}{33}$
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
\(a,5\left(3x+5\right)-4\left(2x-3\right)=5x+8\left(2x+12\right)+1\)
\(\Rightarrow5\left(3x+5\right)-4\left(2x-3\right)-5x-8\left(2x+12\right)-1=0\)
\(\Rightarrow15x+25-8x+12-5x-16x-96-1=0\)
\(\Rightarrow-14x-60=0\)
\(\Rightarrow-14x=60\) \(\Rightarrow x=-\frac{60}{14}=\frac{-30}{7}\)
\(b,\left(2x+3\right)\left(x-4\right)-\left(3x-5\right)\left(x-4\right)=\left(5-x\right)\left(x-2\right)\)
\(\Rightarrow2x^2+3x-8x-12-3x^2+5x+12x-20=5x-x^2-10+2x\)
\(\Rightarrow-x^2+12x-32=7x-x^2-10\)
\(\Rightarrow-x^2+12x-32-7x+x^2+10=0\)
\(\Rightarrow5x-22=0\)
\(\Rightarrow5x=22\Rightarrow x=\frac{22}{5}\)
a) 5(3x+5)-4(2x-3) = 5x+8(2x+12)+1
15x + 25 - 8x + 12 = 5x + 16x + 96 + 1
15x - 8x - 5x - 16x = 96 + 1 - 25 - 12
-14x = 60
x = \(\frac{60}{-14}\)
x = \(-\frac{30}{7}\)
b) (2x+3)(x-4)-(3x-5)(x-4) = (5-x).(x-2)
(x - 4)(2x + 3 - 3x +5) = 5x - 10 - x2 + 2x
(x - 4)[(2x - 3x) + (3 + 5)] = 5x - 10 - x2 + 2x
(x - 4)(-x + 8) = 5x - 10 - x2 + 2x
-x2 + 8x + 4x - 32 = 5x - 10 - x2 + 2x
(-x2 + x2) + (8x + 4x - 5x - 2x) = -10 + 32
5x = 22
x = \(\frac{22}{5}\)
a) 2x( x - 7 ) - ( x + 3 )( x - 2 ) - ( x + 4 )( x - 4 )
= 2x2 - 14x - ( x2 + x - 6 ) - ( x2 - 16 )
= 2x2 - 14x - x2 - x + 6 - x2 + 16
= 22 - 15x
b) ( 2x + 5 )( x - 2 ) - 3( x + 2 )2 + ( x + 1 )2
= 2x2 + x - 10 - 3( x2 + 4x + 4 ) + x2 + 2x + 1
= 3x2 + 3x - 9 - 3x2 - 12x - 12
= -9x - 21
c) ( x + 3 )( x - 3 ) - ( x + 5 )( x - 1 ) - ( x - 4 )2
= x2 - 9 - ( x2 + 4x - 5 ) - ( x2 - 8x + 16 )
= x2 - 9 - x2 - 4x + 5 - x2 + 8x - 16
= -x2 + 4x - 20
d) 2x( x + 1 )2 - ( x - 1 )3 - ( x - 2 )( x2 + 2x + 4 )
= 2x( x2 + 2x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - ( x3 - 8 )
= 2x3 + 4x2 + 2x - x3 + 3x2 - 3x + 1 - x3 + 8
= 7x2 - x + 9
e) ( x + 5 )( x - 5 )( x + 2 ) - ( x + 2 )3
= ( x2 - 25 )( x + 2 ) - ( x3 + 6x2 + 12x + 8 )
= x3 + 2x2 - 25x - 50 - x3 - 6x2 - 12x - 8
= -4x2 - 37x - 58
a) (x - 2)(x + 3) = 6
=> x2 + 3x - 2x - 6 = 6
=> x2 + x - 6 - 6 = 0
=> x2 + x - 12 = 0
=> x2 + 4x - 3x - 12 = 0
=> x(x + 4) - 3(x + 4) = 0
=> (x - 3)(x + 4) = 0
=> \(\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
b) (2x - 3)(x + 2) = 4
=> 2x2 + 4x - 3x - 6 = 4
=> 2x2 + x - 6 - 4 = 0
=> 2x2 + x - 10 = 0
=> 2x2 + 5x - 4x - 10 = 0
=> x(2x + 5) - 2(2x + 5) = 0
=> (x - 2)(2x + 5) = 0
=> \(\orbr{\begin{cases}x-2=0\\2x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
5)\(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90-5\left(1-2x\right)}{15}\)
\(\Leftrightarrow\)3x-9=90-5+10x\(\Leftrightarrow\)3x-10x=90-5+9\(\Leftrightarrow\)-7x=94\(\Leftrightarrow\)x=\(-\dfrac{94}{7}\)
Vậy tập nghiệm của PT là S={\(-\dfrac{94}{7}\)}
6)\(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\Leftrightarrow\dfrac{2\left(3x-2\right)-60}{12}=\dfrac{36-6\left(x+7\right)}{12}\)\(\Leftrightarrow\)6x-4-60=36-6x-42\(\Leftrightarrow\)6x+6x=36-42+64\(\Leftrightarrow\)12x=58\(\Leftrightarrow\)x=\(\dfrac{29}{6}\)
Vậy tập nghiệm của PT là S={\(\dfrac{29}{6}\)
7)\(\dfrac{3x-7}{2}+\dfrac{x+1}{3}=-16\Leftrightarrow\dfrac{3\left(3x-7\right)+2\left(x+1\right)}{6}=\dfrac{-96}{6}\)
\(\Leftrightarrow\)9x-21+2x+2=-96\(\Leftrightarrow\)11x=-96+19\(\Leftrightarrow\)11x=-77\(\Leftrightarrow\)x=-7
Vậy tập nghiệm của PT là S={-7}
8)\(x-\dfrac{x+1}{3}=\dfrac{2x+1}{5}\Leftrightarrow\dfrac{15x-5\left(x+1\right)}{15}=\dfrac{3\left(2x+1\right)}{15}\)
\(\Leftrightarrow\)15x-5x-5=6x+3\(\Leftrightarrow\)10x-6x=5+8\(\Leftrightarrow\)4x=8\(\Leftrightarrow\)x=2
Vậy tập nghiệm của PT là S={2}
1)2x+x+12=0\(\Leftrightarrow\)3x=-12\(\Leftrightarrow\)x=-4
vậy tập nghiệm của PT là S={-4}
2)x-5=3-x\(\Leftrightarrow\)x+x=3+5\(\Leftrightarrow\)2x=8\(\Leftrightarrow\)x=4
Vậy tập nghiệm của PT là S={4}
3)2x-(3-5x)=4(x+3)\(\Leftrightarrow\)2x-3+5x=4x+12\(\Leftrightarrow\)7x-4x=12+3\(\Leftrightarrow\)3x=15\(\Leftrightarrow\)x=5
Vậy tập nghiệm của PT là S={5}
4)\(\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\Leftrightarrow\dfrac{2\left(2x+3\right)}{6}=\dfrac{3\left(5-4x\right)}{6}\)
\(\Leftrightarrow\)4x+6=15-12x\(\Leftrightarrow\)4x+12x=15-6\(\Leftrightarrow\)16x=9\(\Leftrightarrow\)x=\(\dfrac{9}{16}\)
Vậy tập nghiệm của PT là S={\(\dfrac{9}{16}\)}
\(x^5-2x^4+x^3\)
\(=x^3\cdot x^2-x^3\cdot2x+x^3\cdot1\)
\(=x^3\left(x^2-2x+1\right)=x^3\left(x-1\right)^2\)