Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
=>(3x+1)(3x-1-4x-1)=0
=>(3x+1)(x+2)=0
=>x=-1/3 hoặc x=-2
\(9x^2-1=\left(3x+1\right)\left(4x+1\right)< =>\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(4x+1\right)< =>\left(3x+1\right)\left(3x-1-4x-1\right)=0< =>\left(3x+1\right)\left(-x-2\right)=0< =>\left[{}\begin{matrix}3x+1=0\\-x-2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy .......
a) \(9x^2-1=\left(3x+1\right)\left(2x-1\right)\)
\(\Rightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+1\right)=0\)
\(\Leftrightarrow x\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
b) \(\left(4x-3\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2-24x+9=4x^2-8x+4\)
\(\Leftrightarrow12x^2-16x+5=0\)
Ta có \(\Delta=16^2-4.12.5=16,\sqrt{\Delta}=4\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{16+4}{12}=\frac{5}{3}\\x=\frac{16-4}{12}=1\end{cases}}\)
a) Ta có : \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=-2\\x^2=-1\left(loai\right)\end{cases}\Leftrightarrow}x=-2}\)
\(\left(3x+2\right).\left(x^2-1\right)=\left[\left(3x\right)^2-2^2\right].\left(x+1\right)\)
\(\Rightarrow\left(3x+2\right).\left(x-1\right).\left(x+1\right)-\left(3x-2\right).\left(3x+2\right).\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left[x-1-3x+2\right]=0\)
\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left(-2x+1\right)=0\)
đến đây dễ rồi :))
\(ĐK:x\ne\frac{-1}{3}\)
\(PT\Leftrightarrow\left(\frac{4x-3}{3x+1}+2\right)\left(x^2+3x+1-4x-7\right)=0\)
\(\Leftrightarrow\left(\frac{10x-1}{3x+1}\right).\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\)\(x=\frac{1}{10}\)hoặc x=3 hoặc x=-2
Vậy...........
\(9x^2-1+\left(3x-1\right).\left(x+2\right)=0\)
\(\Leftrightarrow9x^2-1+3x^2+6x-x-2=0\)
\(\Leftrightarrow9x^2+3x^2+6x-x=0+1+2\)
\(\Leftrightarrow12x^2+5x=3\)
\(\Leftrightarrow12x^2+5x-3=0\)
\(\Leftrightarrow12x^2-4x+9x-3=0\)
\(\Leftrightarrow4x\left(3x-1\right)+3\left(3x-1\right)\)
\(\Leftrightarrow\left(4x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{4}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm phương trình là S = \(\left\{\dfrac{-3}{4};\dfrac{1}{3}\right\}\)
\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-2\end{cases}}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{-4}{5}\end{cases}}\)
x= -1/3, x= -2