K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)

So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)

Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha

3 tháng 10 2017

2x(6x – 1) > (3x – 2)(4x + 3)

⇔ 12x2 – 2x > 12x2 – 8x + 9x – 6

⇔ 12x2 – 2x – 12x2 + 8x – 9x > -6 (Chuyển vế, đổi dấu)

⇔ -3x > -6

⇔ x < 2 (Chia cả hai vế cho -3 < 0, BPT đổi chiều)

Vậy bất phương trình có nghiệm x < 2.

19 tháng 10 2016

Hãy ôn lại phần:Pương chình dạng tích - Toán lớp 8 - sách giáo khoa

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

22 tháng 2 2022

\(ĐK:x\ge-2\)

\(\Leftrightarrow x^3+6x^2+12x+8+2\sqrt{\left(x+2\right)^3}+1-9x^2-18x-9=0\)

\(\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}+1-\left(9x^2+18x+9\right)=0\)

\(\Leftrightarrow\left[\left(x+2\right)^3+1\right]^2-9\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left[\left(x+2\right)^3+1\right]^2-9\left(x+1\right)^2=0\)

ta có: ( 2 trường hợp xảy ra )

TH1: \(\left[\left(x+2\right)^3+1\right]^2=9\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+2\right)^3+1=\left(9x+9\right)\)

\(\Leftrightarrow\left(x+2\right)^3-9x=8\)

\(\Leftrightarrow x^3+6x^2+12x+8-9x-8=0\)

\(\Leftrightarrow x^3+6x^2+3x=0\)

\(\Leftrightarrow x\left(x^2+6x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+6x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\\left[{}\begin{matrix}x=-3+\sqrt{6}\left(n\right)\\-3-\sqrt{6}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

TH2:\(\left[{}\begin{matrix}\left(x+3\right)^3+1=0\\9\left(x+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^3=-1\\\left(9x+9\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\9x=-9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=-1\left(n\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-1;-3+\sqrt{6}\right\}\)

( ko bít đúng ko nha bạn ơi )

21 tháng 9 2019

Điều kiện : \(x\ge0\)

Ta có : \(\sqrt{3x+1}-\sqrt{2x+2}=2\sqrt{x}-\sqrt{x+3}\)

            \(\Leftrightarrow3x+1+2x+2-2\sqrt{6x^2-8x+2}=4x+x+3-4\sqrt{x^2+3x}\)

            \(\Leftrightarrow\sqrt{6x^2+8x+2}=2\sqrt{x^2+3x}\)

              \(\Leftrightarrow6x^2+8x+2=4\left(x^2+3x\right)\)

             \(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow x=1\)

Vậy nghiệm phương trình đã cho là : \(x=1\)

Chúc bạn học tốt !!!

14 tháng 6 2021

a) \(\dfrac{15-6x}{3}>5\Leftrightarrow15-6x>15\)

\(\Leftrightarrow-6x>0\Leftrightarrow x< 0\) (vì \(-6< 0\))

\(S=\left\{x|x< 0\right\}\)

b) \(\dfrac{8-11x}{4}< 13\Leftrightarrow8-11x< 52\)

\(\Leftrightarrow-11x< -44\Leftrightarrow x>4\) (vì \(-11< 0\))

\(S=\left\{x|x>4\right\}\)

c) \(8x+3\left(x+1\right)>5x-\left(2x-6\right)\)

\(\Leftrightarrow8x+3x+1>5x-2x+6\)

\(\Leftrightarrow8x+3x-5x+2x>6-1\)

\(\Leftrightarrow8x>5\)

\(\Leftrightarrow x>\dfrac{5}{8}\) (vì \(8>0\))

\(S=\left\{x|x>\dfrac{5}{8}\right\}\)

d) \(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)

\(\Leftrightarrow12x^2-2x>12x^2+9x-8x-6\)

\(\Leftrightarrow12x^2-2x-12x^2-9x+8x>-6\)

\(\Leftrightarrow-3x>-6\)

\(\Leftrightarrow x< 2\) (vì \(-3< 0\))

\(S=\left\{x|x< 2\right\}\)

14 tháng 6 2021

a) \(\dfrac{15-6x}{3}>5\) <=> \(15-6x>15\) <=> \(6x< 0\) <=> \(x< 0\)

b) \(\dfrac{8-11x}{4}< 13\) <=> \(8-11x< 52\) <=> \(11x>-44\)<=> \(x>-4\)

c) \(8x+3\left(x+1\right)>5x-\left(2x-6\right)\)

<=> 8x + 3x + 3 - 5x + 2x - 6 > 0

<=> 8x  > 3

<=> x > 3/8

d) 2x(6x - 1) > (3x - 2)(4x + 3)

<=> 12x2 - 2x > 12x2 + x - 6

<=> 12x2 - 2x - 12x2 - x > -6

<=> -3x > -6

<=> x < 2