K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AQ
0
21 tháng 8 2017
đặt \(\sqrt{2x-x^2}=a\)
phương trình trở thành:
\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)
đến đây thì khai triển đi
ĐKXĐ: \(x\ge-\frac{1}{2}\).
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\ge0\\\sqrt{x+4}=b>0\end{matrix}\right.\).
Ta có: \(\left\{{}\begin{matrix}3a-6b+ab+7=0\\2b^2-a^2=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2b^2-a^2+ab+3a-6b=0\\2b^2-a^2=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2b-a\right)\left(a+b-3\right)=0\\2b^2-a^2=7\end{matrix}\right.\).
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2b=a\\a+b=3\end{matrix}\right.\\2b^2-a^2=7\end{matrix}\right.\).
+) Nếu 2b = a thì \(2\sqrt{x+4}=\sqrt{2x+1}\Leftrightarrow4\left(x+4\right)=2x+1\Leftrightarrow x=-\frac{15}{2}\) (loại).
+) Nếu a + b = 3 thì \(\sqrt{2x+1}+\sqrt{x+4}=3\).
Với x > 0 thì VT > 3. Với x < 0 thì VT < 3.
Do đó x = 0 (TMĐK).
Vậy nghiệm của phương trình là x = 0.