\(8x^3-5x^2+10x+4=0\)

2/\(2x^2+3xy...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

Bạn ơi, câu a phải là  8x3  chứ

19 tháng 11 2017

nếu là \(8x^3\)thì giải như thế nào bạn ? giúp mình 2 câu còn lại vs.

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

8 tháng 8 2017

\(\Leftrightarrow\sqrt{4-\left(1-x\right)^2}=\sqrt{3}\)

\(\Leftrightarrow4-\left(1-x\right)^2=3\)

\(\Leftrightarrow4-\left(1-2x+x^2\right)-3=0\)

\(\Leftrightarrow4-1+2x-x^2-3=0\)

\(\Leftrightarrow-x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

vay x=0 ; x=2

\(\sqrt{3x^2-5=2}\left(x\ge\sqrt{\frac{5}{3}}\right)\)

\(\Leftrightarrow3x^2-5=4\)

\(\Leftrightarrow3x^2=9\Leftrightarrow x^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}\left(tm\right)\\x=-\sqrt{3}\left(kotm\right)\end{cases}}\)

vay \(x=\sqrt{3}\)

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\left(x\ge49\right)\)

\(\Leftrightarrow\sqrt{x-49}=2\Leftrightarrow x^2-98x+2401=4\)

\(\Leftrightarrow x^2-98x+2397=0\Leftrightarrow x^2-47x-51x+2397\)\(\Leftrightarrow x\left(x-47\right)-51\left(x-47\right)\Leftrightarrow\left(x-47\right)\left(x-51\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-51=0\\x-47=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=51\left(tm\right)\\x=47\left(kotm\right)\end{cases}}}\)

xay x=51

\(\sqrt{\frac{-6}{1+x}}=5\left(x< -1\right)\)

\(\Leftrightarrow\frac{36}{x^2+2x+1}=25\Leftrightarrow25x^2+50x+25=36\)

\(\Leftrightarrow25x^2+50x-11=0\Leftrightarrow25x^2-5x+55x-11\)

\(\Leftrightarrow5x\left(5x-1\right)+11\left(5x-1\right)\Leftrightarrow\left(5x-1\right)\left(5x+11\right)\)\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\5x+11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\left(kotm\right)\\x=\frac{-11}{5}\left(tm\right)\end{cases}}}\)

vay \(x=\frac{-11}{5}\)

nhung cau nay binh phuong len la xong 

y 3 xem lai de bai 

y 4,7 ko biet lam

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi