Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{x-3}=b\end{cases}}\)
=> a2 + b2 = 2
PT \(\Leftrightarrow\frac{a^3+b^3}{a+b}=2\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a+b}=2\)
\(\Leftrightarrow2-ab=2\Leftrightarrow ab=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{5-x}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Nghĩ đc bài nào làm bài đấy ^^
\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)
\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)
\(\Leftrightarrow x-2mx=m^2+3\)
\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)
*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)
Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)
Pt vô nghiệm
*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)
Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)
Kết hợp ĐKXĐ \(x^2+x-3\ge0\)
\(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)
Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2
=> KL
2) ĐKXĐ : -1 < x < 8
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)
\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)
Khi đó \(a+\frac{a^2-9}{2}=m\)
\(\Leftrightarrow2a+a^2-9=2m\)
\(\Leftrightarrow a^2+2a-9-2m=0\)(1)
Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)
Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)
\(\Leftrightarrow a^2+2a-9\ge-10\)
\(\Leftrightarrow a^2+2a+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)
Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 < x < 8
* với m < -5 thì pt vô nghiệm
P/S: chả bt cách này đúng ko nx =.='
\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)
\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)
Chắc tới đây bạn làm đc rồi nhỉ
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
b. Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath