Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y
(Các câu khác tương tự nhé.)
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
ĐKXĐ : x;y \(\ne0\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=-2\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{1}{x}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\x=\dfrac{1}{9}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9+\dfrac{1}{y}=-1\\x=\dfrac{1}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{10}\\x=\dfrac{1}{9}\end{matrix}\right.\)
HPT đã cho
\(\left\{{}\begin{matrix}\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=\dfrac{2}{3}\\\dfrac{x^2+1}{x}+\dfrac{y^2+1}{y}=6\end{matrix}\right.\)
Đặt \(\dfrac{x}{x^2+1}=u;\dfrac{y}{y^2+1}=v\)
HPT tương đương
\(\left\{{}\begin{matrix}u+v=\dfrac{2}{3}\\\dfrac{1}{u}+\dfrac{1}{v}=6\end{matrix}\right.\)
Tới đây thì dễ rồi u=1/3;v=1/3
Xong tìm được x,y
ĐK: `x ne 2; y ne -1`
Đặt `{a=(1/(x-2)),(b=1/(y+1)):}`
Có: `{(2a+b=3),(4a-3b=1):}`
`<=>{(4a+2b=6),(4a-3b=1):}`
`<=>{(2a+b=3),(5b=5):}`
`<=>{(2a+1=3),(b=1):}`
`<=>{(a=1),(b=1):}`
``
`=>{(1/(x-2)=1),(1/(y+1)=1):}`
`<=>{(x-2=1),(y+1=1):}`
`<=>{(x=3),(y=0):}` (TM)
``
Vậy `(x;y)=(3;0)`.
\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)
Thay vào (1) ta được :
\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}
\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = 1/x ; b = 1/y
Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{4};-3\) )}
c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)
ĐK xác định : x≠0 ; y ≠0
Áp dụng quy tác cộng đại số ta có :
\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)
ĐK xác định : x≠0 ; y≠0
áp dụng quy tắc cộng đại số ta có :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)
Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}
e) ĐK xác định x≠0 ; y≠0
\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)
Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}
Đặt 1/x = a ; 1/y = b
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\\dfrac{10}{3}a+10b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10a+10b=\dfrac{5}{3}\\\dfrac{10}{3}a+10b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{20}{3}a=\dfrac{2}{3}\\b=\dfrac{1}{6}-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{10}\\b=\dfrac{1}{15}\end{matrix}\right.\)
Theo cách đặt x = 10 ; y = 15
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3}.\dfrac{1}{x}+\dfrac{10}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3x}+\dfrac{10}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{3x}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{3x}-\dfrac{1}{y}=\dfrac{1}{6}-\dfrac{1}{10}\\\dfrac{1}{3x}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}=\dfrac{1}{15}\\\dfrac{1}{3x}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=30\\\dfrac{1}{3x}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\\dfrac{1}{3.10}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\\dfrac{1}{30}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\)