Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái ý 2 thêm vào là:
tìm b để hệ có nghiệm duy nhất (x;y) sao cho P= x2+2y2 đạt giá trị nhỏ nhất
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-xy\left(x+y\right)\Leftrightarrow xy\left(x-y\right)=0\)
=> x = 0 ; y = 1 hoặc x = 1 ; y = 0 hoặc x + y = 0 ....
Ta có: \(\hept{\begin{cases}2x+my=1\\mx+2y=1\end{cases}}\)
<=> \(\hept{\begin{cases}4x+2my=2\\m^2x+2my=m\end{cases}}\)
<=> \(4x-m^2x=2-m\)
<=> \(x\left(2-m\right)\left(m+2\right)=2-m\)
Để hpt có nghiệm duy nhất <=> 2 - m \(\ne\)0 <=> m \(\ne\)2
<=> \(x=\frac{2-m}{\left(2-m\right)\left(m+2\right)}=\frac{1}{m+2}\)
=> y = \(\frac{1-mx}{2}=\frac{1-m\cdot\frac{1}{m+2}}{2}=\frac{m+2-m}{2\left(m+2\right)}=\frac{1}{m+2}\)
Theo bài ra, ta có: \(x^2+y^2=\frac{1}{2}\) <=> \(\left(\frac{1}{m+2}\right)^2+\left(\frac{1}{m+2}\right)^2=\frac{1}{2}\)
<=> \(2\left(\frac{1}{m+2}\right)^2=\frac{1}{2}\)
<=> \(\left(\frac{1}{m+2}\right)^2=\frac{1}{4}\)
<=> \(\orbr{\begin{cases}\frac{1}{m+2}=\frac{1}{2}\\\frac{1}{m+2}=-\frac{1}{2}\end{cases}}\)
<=> \(\orbr{\begin{cases}m+2=2\\m+2=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}m=0\\m=-4\end{cases}}\left(tm\right)\)
Vậy ....
Đề bài sai nhé, tìm GTNN chứ không phải GTLN. Bài này không có GTLN.
Biệt thức \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\) với mọi \(m\). Do đó phương trình đã cho luôn có 2 nghiệm phân biệt.
Theo định lý Vi-et ta có \(x_1+x_2=m-1,x_1x_2=-m^2+m-2\to x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(\to x_1^2+x_2^2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5.\)
Giá trị lớn nhất không tồn tại vì khi m lớn tùy ý thì \(x_1^2+x_2^2\) lớn tùy ý.
Ta có \(3m^2-4m+5=\frac{1}{3}\left(3m-2\right)^2+5-\frac{4}{3}\ge5-\frac{4}{3}=\frac{11}{3}.\) Suy ra \(x_1^2+x_2^2\ge\frac{11}{3}.\) Dấu bằng xảy ra khi và chỉ khi \(m=\frac{2}{3}\). Vậy \(m=\frac{2}{3}\) thì \(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
\(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}\Leftrightarrow\hept{\begin{cases}3x-y=2m-1\\3x+6y=9m+6\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}-7y=-7m-7\\x+2y=3m+2\end{cases}}\)
\(\left(1\right)\Rightarrow y=\frac{-7\left(m+1\right)}{-7}=m+1\)(3)
Thay (3) vào (2) ta được : \(x+2m+2=3m+2\Leftrightarrow x=m\)(4)
Thay (3) ; (4) vào biểu thức trên ta được
\(x^2+y^2=10\Rightarrow m^2+\left(m+1\right)^2=10\)
\(\Leftrightarrow m^2+m^2+2m+1=10\Leftrightarrow2m^2+2m-9=0\)
\(\Leftrightarrow m=\frac{-1\pm\sqrt{19}}{2}\)