Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(\hept{\begin{cases}7x-3y=5\\3x+2y=12\end{cases}}\) <=> \(\hept{\begin{cases}21x-9y=15\\21x+14y=84\end{cases}}\) <=> \(\hept{\begin{cases}-23y=-69\\3x+2y=12\end{cases}}\) <=> \(\hept{\begin{cases}y=3\\x=\frac{12-2y}{3}=\frac{12-2.3}{3}=2\end{cases}}\)
Vậy nghiệm của hpt là: (2;3)
giải hpt:
\(\hept{\begin{cases}x^3-3x+2=y^3+3y^2\\\sqrt{x-2}+\sqrt{x^3-3x^2+y+2}=x^2-3y\end{cases}}\)
Phải là giải hệ pt : x^3+2 = 3y ; y^3+2 = 3x chứ bạn ơi
hệ pt => (x^3+2)-(y^3+2) = 3y-3x
<=> x^3-y^3 = 3y-3x
<=> x^3-y^3-(3y-3x) = 0
<=> x^3-y^3+3x-3y
<=> (x-y).(x^2+xy+y^2)+3.(x-y) = 0
<=> (x-y).(x^2+xy+y^2+3) = 0
<=> x-y=0 ( vì x^2+xy+y^2+3 > 0 )
<=> x=y
Khi đó : 3y = x^3+2 = y^3+2
<=> y^3-3y+2 = 0
<=> (y^3-1)-(3y-3) = 0
<=> (y-1).(y^2+y+1)-3.(y-1) = 0
<=> (y-1).(y^2+y+1-3) = 0
<=> (y-1).(y^2+y-2) = 0
<=> (y-1).[(y^2-y)+(2y-2)] = 0
<=> (y-1)^2.(y+2) = 0
<=> y-1=0 hoặc y+2=0
<=> x=y=1 hoặc x=y=-2
Vậy .............
Tk mk nha
b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19
=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)
thay 3x=15+9y zô (4) ta đc
\(15+9y-7y=19\)
=>\(2y=4=>y=2\)
\(=>x-3.2=5=>x=11\)
thay x=11 , y=6 ta có
\(4.11+2=13.m-32\)
=> m=6
b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)
thay zô (4) , rồi làm biến đổi như câu a) nhá
xong => y=m-4
=> x=5+3y
=> x=5+3(m-4)=3m-7
\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)
c) Thay x=3m-7 ; y=m-4 ta có
\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)
\(=9m^2-42m+49+6m-24+2030\)
\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)
\(=\left(3m-6\right)^2+2019\ge2019\forall m\)
dấu = xảy ra khi 3m-6=0 => m=2
zậy ...
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
\(\begin{cases}x^3=7x+3y\left(1\right)\\y^3=7y+3x\left(2\right)\end{cases}\). Lấy \(\left(1\right)-\left(2\right)\) ta được
\(\left(x-y\right)\left(x^2+xy+y^2-4\right)=0\)
\(x^3=7x+3x\Leftrightarrow x^3=10x\)
\(\Leftrightarrow x^3-10x=0\Leftrightarrow x\left(x^2-10\right)=0\)\(\Leftrightarrow\begin{cases}x=y=0\\x=y=\pm\sqrt{10}\end{cases}\)
\(\begin{cases}x^2+xy+y^2=4\\x^3+y^3=10\left(x+y\right)\end{cases}\) đặt \(\begin{cases}S=x+y\\P=xy\end{cases}\) \(\left(S^2\ge4P\right)\) ta có:
\(\begin{cases}P=S^2-4\\S^3-3SP-10S=0\end{cases}\) thay \(P=S^2-4\) ta có:
\(S^3-3S\left(S^2-4\right)-10S=0\)
\(\Leftrightarrow-2S\left(S-1\right)\left(S+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}S=0\\S=1\\S=-1\end{array}\right.\)