Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh tam giác vuông ABH và ADI có:
AB = AD (đề)
góc BAH = góc DAI (đối đỉnh)
Nên tam giác ABH = ADI (cạnh huyền góc nhọn)
=> BH = DI
Chúc bạn học tốt !
Bạn tự vẽ hình nha !
Xét hai tam giác vuông ABH và AID có:
AB=AD (GT)
Góc BAH=IAD (đối đỉnh)
Suy ra tam giác ABH=AID (cạnh huyền và góc nhọn kề)
Suy ra BH=ID (hai cạnh tương ứng)
a, CM tam giác ACH = tam giác KCH
Xét tam giác ACH và tam giác KCH, có:
- AH = KH (H là trung điểm AK)
- góc AHC = góc KHC = 90 độ
- cạnh HC chung
=> tam giác ACH = tam giác KCH (đpcm)
b, Gọi E là trung điểm của BC. Trên tia đối của tía EA lấy điểm D sao cho AE=DE. CM: BD song song với AC
Xét tam giác AEC và tam giác DEB, có:
- AE = DE (giả thiết)
- BE = CE (E là trung điểm BC)
- góc AEC = góc DEB (2 góc đối nhau)
=> tam giác AEC = tam giác DEB
=> góc EAC = góc EDB, góc ECA = góc EBD (góc tương ứng của 2 tam giác bằng nhau)
=> DB // AC (so le trong) (đpcm)
c, EB là phân giác của góc AEK
Xét tam giác EHA và tam giác EHK, có:
- EH chung
- góc EHA = góc EHK = 90 độ
- HA = HK (H là trung điểm AK)
=> tam giác EHA = tam giác EHK
=> EA = EK => tam giác EAK cân tại E
mà H là trung điểm AK
=> EH là trung tuyến, trung tực, phân giác của tam giác cân EAK
Ta có EH là phân giác của góc AEK
mà B,H,E thẳng hàng
=> EB là phân giác của góc AEK (đpcm)
d, Gọi F là trung điểm của KD. I là giao điểm BD và KC. CM: A,F,I thẳng hàng
(chưa nghĩ ra)
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
GT:AH vuông BC
AD=AB
DI vuông AH
KL:BH=ID
Bài làm
Ta có:
\(\widehat{A1}=\widehat{A2}\)(đối đỉnh)(1)
\(AB=AD\)(GT)(2)
mà\(\widehat{B}=180^0-90^0-\widehat{A1}\)
\(\widehat{D}=180^0-90^0-\widehat{A2}\)
và\(\widehat{A1}=\widehat{A2}\)
=>\(\widehat{B}=\widehat{D}\)(3)
Từ (1),(2),(3) suy ra:\(\Delta\)ABH=\(\Delta\)ADI(g-c-g)
=>BH=ID(hai cạnh tương ứng)
Vậy BH=ID
Hk tot ^3^