Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P2\(=\left(\frac{1-A\sqrt{A}}{1-\sqrt{A}}+\sqrt{A}\right).\left(\frac{1-\sqrt{A}}{1-A}\right)^2\)\(=\left(\frac{1-A\sqrt{A}+\sqrt{A}-A}{1-\sqrt{A}}\right).\frac{\left(1-\sqrt{A}\right)^2}{\left(1-A\right)^2}\)\(=\frac{\left(\sqrt{A}+1\right)\left(1-A\right)}{1-\sqrt{A}}.\frac{\left(1-\sqrt{A}\right)^2}{\left(1-\sqrt{A}\right)^2\left(1+\sqrt{A}\right)^2}\)
\(=\left(\sqrt{A}+1\right)^2.\frac{1}{\left(1+\sqrt{A}\right)^2}=1\)
a/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(J=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(1-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1-\sqrt{x}+1\right)\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)
\(=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}\)
Vậy...
b/ ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(K=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x-1}}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\frac{x-1}{\sqrt{x}}\)
Vậy...
c/ Tương tự
Đây là đề chứng minh hả !
Phần a , b đúng r
Nhưng phần b chỗ \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2\) = a - b
Dùng hằng đẳng thức thức 3 như vậy sẽ hay hơn !
Chúc bạn học tốt!
Sửa đề: chứng minh
\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)=4-a\)
ĐKXĐ: \(a\ge0;a\ne1\)
\(\left(\frac{2\left(\sqrt{a}-1\right)+a-\sqrt{a}}{\sqrt{a}-1}\right)\left(\frac{2\left(\sqrt{a}+1\right)-a-\sqrt{a}}{\sqrt{a}+1}\right)\)
\(=\left(\frac{\sqrt{a}+a-2}{\sqrt{a}-1}\right)\left(\frac{\sqrt{a}-a+2}{\sqrt{a}+1}\right)\)
\(=\frac{\left(\sqrt{a}+a-2\right)\left(\sqrt{a}-a+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{\left(\sqrt{a}\right)^2-\left(a-2\right)^2}{\left(\sqrt{a}\right)^2-1}\)
\(=\frac{a-a^2+4a-4}{a-1}\)
\(=\frac{-a\left(a-1\right)+4\left(a-1\right)}{a-1}\)
\(=\frac{\left(4-a\right)\left(a-1\right)}{a-1}=4-a=VP\)
=> đpcm
Đề bài đúng chứ