Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x^2+x-2x+2-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x}{x+1}\)
a) \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Dấu "=" xảy ra khi \(\left(x+1\right)^2+2=2\Rightarrow x=-1\)
Vậy \(MinA=2\)khi \(x=-1\)
c) \(4x^2-4x+5=\left(4x^2-4x+1\right)+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi \(\left(2x-1\right)^2+4=4\Rightarrow x=\dfrac{1}{2}\)
Vậy \(MinC=4\) khi \(x=\dfrac{1}{2}\)
Ta có: \(\Delta ABC\sim\Delta MNP\)
\(\Rightarrow\dfrac{AB}{MN}=\dfrac{AC}{MP}=\dfrac{BC}{NP}=\dfrac{1}{2}\)
mà AB = 4 cm, BC = 6 cm, AC = 5 cm. Thay vào, ta lại có:
\(\Rightarrow\dfrac{4}{MN}=\dfrac{5}{MP}=\dfrac{6}{NP}=\dfrac{1}{2}\)
\(\Rightarrow MN=\dfrac{2.4}{1}=8\left(cm\right)\)
\(\Rightarrow MP=5.2=10\left(cm\right)\)
\(\Rightarrow NP=6.2=12\left(cm\right)\)
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ΔHDB vuông tại D
mà DI là đường trung tuyến
nên IH=ID=IB
=>IH=ID
=>ΔIHD cân tại I
=>\(\widehat{IDH}=\widehat{IHD}\)
mà \(\widehat{IHD}=\widehat{BCA}\)(hai góc đồng vị, HD//AC)
nên \(\widehat{IDH}=\widehat{BCA}\)
Ta có: ADHE là hình chữ nhật
=>\(\widehat{EDH}=\widehat{EAH}=\widehat{HAC}\)
mà \(\widehat{HAC}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{EDH}=\widehat{ABC}\)
\(\widehat{EDI}=\widehat{EDH}+\widehat{IDH}\)
\(=\widehat{ABC}+\widehat{ACB}\)
\(=90^0\)
=>ED\(\perp\)DI
c: Ta có: ΔCEH vuông tại E
mà EK là đường trung tuyến
nên KE=KH
=>ΔKEH cân tại K
=>\(\widehat{KEH}=\widehat{KHE}\)
mà \(\widehat{KHE}=\widehat{ABC}\)(hai góc đồng vị, EH//AB)
nên \(\widehat{KEH}=\widehat{ABC}\)
Ta có: ADHE là hình chữ nhật
=>\(\widehat{DEH}=\widehat{DAH}\)
mà \(\widehat{DAH}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{DEH}=\widehat{ACB}\)
\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>KE\(\perp\)ED
mà DI\(\perp\)DE
nên DI//KE
Xét tứ giác EKID có DI//EK
nên EKID là hình thang
Hình thang EKID có \(\widehat{KED}=90^0\)
nên EKID là hình thang vuông
d: DI=HB/2
=>HB=2*DI=2(cm)
EK=1/2CH
=>\(CH=2\cdot EK=2\cdot4=8\left(cm\right)\)
BC=BH+CH
=2+8
=10(cm)
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot10\cdot6=30\left(cm^2\right)\)
Answer:
\(\left(x^2+x+2\right).\left(x^2+x+3\right)=6\)
Ta có: \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall x\)
Ta đặt: \(a=x^2+x+2\left(a>0\right)\)
Lúc này phương trình trở thành:
\(a.\left(a+1\right)=6\)
\(\Rightarrow a^2+a=6\)
\(\Rightarrow a^2+a-6=0\)
\(\Rightarrow a^2+3a-2a-6=0\)
\(\Rightarrow a.\left(a+3\right)-2.\left(a+3\right)=0\)
\(\Rightarrow\left(a-2\right).\left(a+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=2\\a=-3\text{(Loại)}\end{cases}}\)
Với \(a=2\)
\(\Rightarrow x^2+x+2=2\)
\(\Rightarrow x^2+x+2-2=0\)
\(\Rightarrow x^2+x=0\)
\(\Rightarrow x.\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
a) trong tam giác ADB có ADC là góc ngoài tại đỉnh D
=>góc ADC = góc BAD + góc ABD
mà góc BAD = góc DBE
=>góc ADC = góc ABD + góc DBE
=>góc ADB = góc ABE
Xét tam giác ADC va tam giác ABE
Góc BAD = góc CAD(AD là p/g tại đỉnh A)
góc ABE = góc ADC(cmt)
=> tam giác ABE đồng dạng với tam giác ADC(g.g)
1b) Xét tam giac AEB và tam giác BED
góc E chung
góc DBE = góc DAB(gt)
=>tam giác ABE đồng dạng vói tam giác BDE(g.g)
=>BE/DE = AE/BE
=>BE.BE=DE.AE
hayBE^2=DE.AE
giải hộ