\(\begin{cases} x^2 - 3xy+y^2=-1\\ 3x^2-xy+3y^2=13 \end{cases} \)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2021

a) HPT đã cho tương đương:

\(\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\-\left(3x^2-xy+3y^2\right)=13\left(x^2-3xy+y^2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\16x^2+16y^2-40xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\8\left(2x-y\right)\left(x-2y\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\left(1\right)\\\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\end{matrix}\right.\)

+) Nếu 2x = y thì thay vào (1) ta có \(x^2-6x^2+4x^2=-1\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\).

Với x = 1 thì y = 2. Với x = -1 thì y = -2.

+) Nếu x = 2y thì thay vào (1) ta có \(4y^2-6xy+y^2=-1\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\).

Với y = 1 thì x = 2. Với y = -1 thì x = 2.

Vậy....

 

11 tháng 6 2018

@Hắc Hường

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

1. Ta có:

\(\Leftrightarrow \left\{\begin{matrix} x+y+3xy=21\\ x^2+y^2-xy=-15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y+3xy=21\\ (x+y)^2-3xy=-15\end{matrix}\right.\)

Đặt $x+y=a; xy=b$ thì HPT trở thành:\( \left\{\begin{matrix} a+3b=21\\ a^2-3b=-15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3b=21-a\\ a^2-3b+15=0\end{matrix}\right.\)

\(\Rightarrow a^2-(21-a)+15=0\Leftrightarrow a^2+a-6=0\)

\(\Leftrightarrow (a-2)(a+3)=0\Rightarrow a=2\) hoặc $a=-3$

Nếu $a=2$ thì $b=\frac{19}{3}$. Như vậy $x+y=2; xy=\frac{19}{3}$

Áp dụng định lý Viet đảo suy ra $x,y$ là nghiệm của PT $X^2-2X+\frac{19}{3}=0$ (pt vô nghiệm)

Nếu $a=-3$ thì $b=8$. Áp dụng định lý Viet đảo thì $x,y$ là nghiệm của PT $X^2+3X+8=0$ (pt vô nghiệm)

Tóm lại HPT vô nghiệm.

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

2. 

HPT \(\Leftrightarrow \left\{\begin{matrix} (x+xy+y)^3-3(x+xy)(x+y)(xy+y)=17\\ x+xy+y=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 5^3-3(x+xy)(x+y)(xy+y)=17\\ (x+1)(y+1)=6\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x+xy)(x+y)(xy+y)=36\\ (x+1)(y+1)=6\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} xy(x+y)(x+1)(y+1)=36\\ (x+1)(y+1)=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy(x+y)=6\\ x+y+xy=5\end{matrix}\right.\)

Theo định lý Viet đảo thì $xy,x+y$ là nghiệm của PT:

$X^2-5X+6=0$

$\Rightarrow (xy,x+y)=(3,2); (2,3)$

Nếu $(xy,x+y)=(3,2)$ thì theo Viet đảo thì $x,y$ là nghiệm của PT $K^2-2K+3=0$ (vô nghiệm)

Nếu $(xy,x+y)=(2,3)$ thì theo Viet đảo thì $x,y$ là nghiệm của PT $K^2-3K+2=0$

$\Rightarrow (x,y)=(1,2); (2,1)$

 

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

7 tháng 1 2017

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)

Đơn giản rồi làm tiếp nhé

7 tháng 1 2017

\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)

Với x = 0 thì y = 0

Với x \(\ne\)0 thì nhân pt trên cho x ta được

\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế được

\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)

\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)

\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)

Tới đây thì đơn giản roofin làm tiếp nhé

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

Dùng cái đầu đi ạ

27 tháng 1 2019

\(\hept{\begin{cases}x^3+y^3=9\\x^2+2y^2=x+4y\end{cases}\Leftrightarrow}\hept{\begin{cases}x^3+y^3=9\\3x^2+6y^2=3x+12y\end{cases}}\)

Trừ 2 vế của pt cho nhau ta được

\(x^3-3x^2+y^3-6x^2=9-3x-12y\)

\(\Leftrightarrow\left(x-1\right)^3=\left(2-y\right)^3\)

\(\Leftrightarrow x-1=2-y\)

\(\Leftrightarrow x=3-y\)

Thế vào một trong 2 pt ban đầu sẽ tìm đc x ; y  

28 tháng 1 2019

\(\hept{\begin{cases}3x^3+5y^3-2xy=6\\2x^3+3y^3+3xy=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y^3=13xy-12\\x^3=22-21xy\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^3y^3+\left(13xy-12\right)\left(21xy-22\right)=0\\x^3=22-21xy\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^3=22-21xy\\x^3y^3+273x^2y^2-538xy+264=0\left(1\right)\end{cases}}\)

Giải (1) : \(x^3y^3+273x^2y^2-538xy+264=0\)

Pt này có 1 nghiệm là 1 , 2 nghiệm còn lại xấu quá :( \(-137\pm\sqrt{19033}\) nên mk ko làm nx , đại khái hướng làm là như vậy

Tìm đc xy rồi thay vào x3 = 22 - 21xy sẽ tìm đc x -> y

5 tháng 2 2020

a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\) 

Lấy (2) trừ (1)

\(\Rightarrow x^2+xy+y^2=7\) (3)

Từ (3) và (2)

\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)

\(\Leftrightarrow x^2+y^2=5\)(4)

Thay( 4) vào (1)

\(\Rightarrow xy=\frac{10}{3}\) 

Thay xy vào (1)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)

=> tìm đc x ; y

cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x + xy + y2  vậy?