Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
Giải hệ:
\(\hept{\begin{cases}xy-y^2=\sqrt{3y-1}-\sqrt{x+2y-1}\\x^2y-4xy^2+7xy-5x-y+2=0\end{cases}}\)
tth coi như chú chưa giải được nhé, 3GP cho bác Lâm :]]]
Mà mình có được tick GP đouu :>
ĐK: \(x\ge2,y\ge2\)
Chú ý \(x^2+xy+2y^2\ge x^2+xy+2y^2-\frac{7}{16}\left(x-y\right)^2=...\)
(Đẳng thức xảy ra khi x = y)
Từ đó$:$ \(\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
$\geqq \frac{1}{4} \Big[(3x+5y) +(5x+3y)\Big]$
$=2(x+y)=\text{VP(1)}$
Đẳng thức xảy ra khi x = y.
Thay vào, PT(2) tương đương với$:$
\(\left(8x-6\right)\sqrt{x-1}=\left(2+\sqrt{x-2}\right)\left(x+4\sqrt{x-2}+3\right)\)
Đặt \(\sqrt{x-2}=a\left(a\ge0\right)\Rightarrow x=a^2+2\)
PT \(\Leftrightarrow\left(8a^2+10\right)\sqrt{a^2+1}=\left(2+a\right)\left(a^2+4a+5\right)\)
\(\Leftrightarrow\) $a (-4 + 3 a) (65 + 56 a + 86 a^2 + 24 a^3 + 21 a^4) =0$
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=\frac{4}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=\frac{34}{9}\end{matrix}\right.\) (TMĐK)
Vậy....
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
Từ \(pt\left(2\right)\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)
\(\Leftrightarrow-\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)
tự làm nốt đi (nóng quááááááááááááááá)
ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-y-1}=a\ge0\\\sqrt{x+2y}=b\ge0\end{matrix}\right.\)
Khi đó pt dưới trở thành:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\)
\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)
\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) (do \(a;b\ge0\Rightarrow2ab+1>0\))
\(\Rightarrow\sqrt{2x-y-1}=\sqrt{x+2y}\)
\(\Leftrightarrow2x-y-1=x+2y\)
\(\Leftrightarrow x=3y+1\)
Thay vào pt đầu:
\(\left(3y+1\right)^2-5y^2-8y=3\)
Bạn giải nốt
1/PT (1) cho ta nhân tử x - y - 1:)
\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)
ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)
PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)
Dễ thấy cái ngoặc to < 0
Do đó x= y + 1
Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)
ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)
PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)
\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)
Cái ngoặc to > 0 =>...
P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(
2/ĐK: \(x\ge-y;y\ge0\)
PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)
Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).
Do đó x = y \(\ge0\)
Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)
Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)
Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)
P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((