Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: ..
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}-\sqrt{2\left(x+y\right)}=4\\x+2y+\dfrac{2\sqrt{\left(x+y\right)\left(2x+5y\right)}}{3}=24\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}=a\ge0\\\sqrt{2\left(x+y\right)}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{a^2+b^2}{6}+\dfrac{ab}{3}=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left(a+b\right)^2=144\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left[{}\begin{matrix}a+b=12\\a+b=-12\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(8;4\right)\\\left(a;b\right)=\left(-4;-8\right)\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(2x+5y\right)=64\\2\left(x+y\right)=16\end{matrix}\right.\) \(\Leftrightarrow...\)
b.
Thế pt trên xuống dưới:
\(x^4+6y^4=\left(x+2y\right)\left(x^3+3y^3-2xy^2\right)\)
\(\Leftrightarrow2x^3y-2x^2y^2-xy^3=0\)
\(\Leftrightarrow xy\left(2x^2-2xy-y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-\left(1+\sqrt{3}\right)x\\y=\left(-1+\sqrt{3}\right)x\end{matrix}\right.\)
Thế vào pt đầu ...
Đề cho hơi xấu, nếu pt đầu là \(x^3+3y^3-2x^2y=1\) thì đẹp hơn nhiều
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
a/ ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)
\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\)
Phương trình trở thành:
\(a=a^2-12\Leftrightarrow a^2-a-12=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)
\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)
\(\Leftrightarrow x^2-16=x^2-16x+64\)
\(\Rightarrow x=5\)
b/ \(x\ge-\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\\\sqrt{4x^2-2x+1}=b\end{matrix}\right.\) ta được:
\(a+3b=3+ab\)
\(\Leftrightarrow ab-a-\left(3b-3\right)=0\)
\(\Leftrightarrow a\left(b-1\right)-3\left(b-1\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{4x^2-2x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=9\\4x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
a/ \(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy-5=0\\4xy\left(x+2y\right)+5\left(x+2y\right)-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2y\right)^2-\left(4xy+5\right)=0\\\left(4xy+5\right)\left(x+2y\right)-1=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+2y=a\\4xy+5=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-b=0\\ab=1\end{matrix}\right.\) \(\Rightarrow a^2-\frac{1}{a}=0\Rightarrow a^3-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+2y=1\\4xy+5=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1-2y\\4y\left(1-2y\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-2y\\-8y^2+4y+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=-\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)
b/Cộng vế với vế:
\(17x^2-2\left(4y^2+1\right)x+y^4+1=0\)
\(\Delta'=\left(4y^2+1\right)^2-17\left(y^4+1\right)=-y^4+8y^2-16\)
\(\Delta'=-\left(y^2-4\right)^2\ge0\Rightarrow y^2-4=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
- Với \(y=2\) \(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)
\(\)- Với \(y=-2\Rightarrow x^2-2x-7=0\Rightarrow x=1\pm2\sqrt{2}\)
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
\(\begin{aligned} &\text { Điêu kiện }\left\{\begin{array}{l} 2 x+y \geq 0 \\ x-2 y+1 \geq 0 \end{array}\right.\\ &\text { Ta có hệ phương trình dã cho } \Leftrightarrow\left\{\begin{array}{l} 3 \sqrt{2 x+y}+\sqrt{x-2 y+1}=5 \\ 2 \sqrt{x-2 y+1}-(5 x+10 y)=9 \end{array}\right.\\ &\text { Đặt } u=\sqrt{2 x+y},(\mathrm{u} \geq 0) \text { và } v=\sqrt{x-2 y+1},(v \geq 0)\\ &\text { Suy ra }\left\{\begin{array}{l} 2 x+y=u^{2} \\ x-2 y+1=v^{2} \end{array} \Rightarrow\left\{\begin{array}{l} 2 x+y=u^{2} \\ x-2 y=v^{2}-1 \end{array}\right.\right.\\ &\text { Ta có } 5 x+10 y=m(2 x+y)+n(x-2 y), \text { suy ra }\left\{\begin{array}{l} 2 m+n=5 \\ m-2 n=10 \end{array} \Rightarrow\left\{\begin{array}{l} m=4 \\ n=-3 \end{array}\right.\right.\\ &\text { Vậy } 5 x+10 y=4(2 x+y)-3(x-2 y)=4 u^{2}-3\left(v^{2}-1\right) \end{aligned}\)
\(\text{Vậy ta có hệ phương trình}: \begin{array}{*{20}{l}} {\left\{ {\begin{array}{*{20}{l}} {3u + v = 5}\\ {2v - \left( {4{u^2} - 3{v^2} + 3} \right) = 9} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {v = 5 - 3u}\\ {4{u^2} - 3{v^2} - 2v + 12 = 0} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {v = 5 - 3u}\\ {23{u^2} - 96u + 73 = 0} \end{array}} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} u = 1\\ v = 2 \end{array} \right.\\ \left\{ \begin{array}{l} u = \dfrac{{73}}{{23}}\\ v = - \dfrac{{104}}{{23}} \end{array} \right. \end{array} \right.} \end{array}\)
\(\text{Trường hợp 1}: \left\{\begin{array}{l}u=1 \\ v=2\end{array} \Rightarrow\left\{\begin{array}{l}2 x+y=1 \\ x-2 y=3\end{array} \Leftrightarrow\left\{\begin{array}{l}x=1 \\ y=-1\end{array}\right. (tm) \right.\right.\\ \text{Trường hợp 2}: \left\{\begin{array}{l}u=\dfrac{73}{23} \\ v=-\dfrac{104}{23}\end{array}\right. (ktm \left.v \geq 0\right)\\ \text{Vậy hệ phương trình đã cho có nghiệm} \left\{\begin{array}{l}x=1 \\ y=-1\end{array}\right..\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
Phương trình đầu trở thành:
\(\left(1-b^2\right)a+a^2+b^2=2+\left(a^2-1\right)b\)
\(\Leftrightarrow a+b+a^2+b^2-a^2b-ab^2-2=0\)
\(\Leftrightarrow a-1+b-1-a^2\left(b-1\right)-b^2\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b^2\right)\left(a-1\right)+\left(a^2-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)\left(2+a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y+1\\y=1\end{matrix}\right.\)
Trường hợp \(y=1\) đơn giản bạn tự thay xuống giải
- Với \(x=y+1\)
\(2y^2-3\left(y+1\right)+6y+1-2\sqrt{1-y}+\sqrt{1-y}=0\)
\(\Leftrightarrow2y^2+3y-2-\sqrt{1-y}=0\)
\(\Leftrightarrow2y^2+2y-2+y-\sqrt{1-y}=0\)
\(\Leftrightarrow2\left(y^2+y-1\right)+\frac{y^2+y-1}{y+\sqrt{1-y}}=0\)
Nhớ nhìn căn thức và loại nghiệm theo ĐKXĐ
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2+2y+2\ge0\\3x+y\ge0\end{matrix}\right.\)
Ta có : \(\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)=3\)
\(\Leftrightarrow\dfrac{3}{\sqrt{4x^2+3}+2x}.\dfrac{3}{\sqrt{y^2-2y+4}+y-1}=3\)
\(\Leftrightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=3\)
\(\Rightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)\)
\(\Leftrightarrow2x\sqrt{y^2-2y+4}+\left(y-1\right).\sqrt{4x^2+3}=0\)
\(\Leftrightarrow2x\sqrt{y^2-2y+4}=\left(1-y\right).\sqrt{4x^2+3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2.\left(y^2-2y+4\right)=\left(y^2-2y+1\right).\left(4x^2+3\right)\\2x.\left(1-y\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=y^2-2y+1\\2x\left(1-y\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y-1\\2x=1-y\end{matrix}\right.\\2x\left(1-y\right)\ge0\end{matrix}\right.\)
Với 2x = 1 - y
Khi đó ta có \(\sqrt{4x^2+2y+2}-\sqrt{3x+y}=2x+1\)
\(\Leftrightarrow\sqrt{4x^2-4x+4}-\sqrt{x+1}=2x+1\) (ĐK : \(x\ge-1\))
\(\Leftrightarrow2\sqrt{x^2-x+1}-\sqrt{x+1}=2x+1\)
\(\Leftrightarrow2\left(\sqrt{x^2-x+1}-1\right)=2x+\sqrt{x+1}-1\)
\(\Leftrightarrow\dfrac{2x\left(x-1\right)}{\sqrt{x^2-x+1}+1}=2x+\dfrac{x}{\sqrt{x+1}+1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2x-2}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}\left(1\right)\end{matrix}\right.\)
Phương trình (1)
<=> \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)
Xét vế trái : \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=\sqrt{\dfrac{4x^2+4x+1}{x^2-x+1}}=\sqrt{\dfrac{5x^2-5x+5-x^2+9x-4}{x^2-x+1}}\)
\(=\sqrt{5-\dfrac{x^2-9x+4}{x^2-x+1}}< \sqrt{5}\) (2)
Lại có \(2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)
\(=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}\)
\(\ge2+\dfrac{\left(1+1+1+1+1\right)^2}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}=2+\dfrac{25}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}\)
Dấu "=" khi \(\dfrac{1}{\sqrt{x+1}+1}=\dfrac{1}{\sqrt{x^2-x+1}}\Leftrightarrow\left[{}\begin{matrix}x\approx3,498374325\\x\approx-0,7385661113\end{matrix}\right.\)
Khi đó \(VP\ge3,6\) (3)
Từ (3) và (2) => (1) vô nghiệm
Vậy x = 0 => y = 1
Với 2x = y - 1 kết hợp điều kiện 2x(1 - y) \(\ge0\)
ta được x = 0 ; y = 1
Vậy (x ; y) = (0;1)
Đề có vẻ sai sai. Bạn xem lại đề xem có đúng không?
Phiền bạn chủ tus và chị Akai Haruma . Chị ơi chị giúp e câu hỏi e gửi trong inbox nhé ! Nhờ chị từ hôm kia mà k thấy chị nói gì em mới cmt là phiền . Nếu chị đọc được thì chị xóa giùm em !