K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{3}{\left(x+y\right)^2}=\dfrac{85}{3}\\\left(x+y\right)+\left(x-y\right)+\dfrac{1}{x+y}=\dfrac{13}{3}\end{matrix}\right.\)

\(a=x+y\); \(b=x-y\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+b^2+\dfrac{3}{a^2}=\dfrac{85}{3}\\a+b+\dfrac{1}{a}=\dfrac{13}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(a+\dfrac{1}{a}\right)^2-6+b^2=\dfrac{85}{3}\\a+\dfrac{1}{a}=\dfrac{13}{3}-b\end{matrix}\right.\)

\(\Rightarrow3\left(\dfrac{13}{3}-b\right)^2-6+b^2=\dfrac{85}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}b=1\\b=\dfrac{11}{2}\end{matrix}\right.\)đến đây tự làm nha

a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)

18 tháng 1 2021

b) ĐKXĐ: \(x,y\neq 0\).

Ta có: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{x}-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=0\\xy=-1\end{matrix}\right.\\2y=x^3+1\end{matrix}\right.\).

Với x - y = 0 suy ra x = y. Do đó \(2x=x^3+1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1=y\left(TMĐK\right)\\x=\pm\dfrac{\sqrt{5}-1}{2}=y\left(TMĐK\right)\end{matrix}\right.\).

Với xy = -1 suy ra \(y=-\dfrac{1}{x}\). Do đó \(x^3+\dfrac{2}{x}+1=0\Rightarrow x^4+x+2=0\). Phương trình vô nghiệm do \(x^4+x+2=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\).

Vậy...

19 tháng 1 2021

Em cảm ơn ạ !

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

30 tháng 3 2017

a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :

\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)

c) Cách làm tương tự như pt a ta có :

\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)

d) Tương tự ta có :

\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 6 2021

DK:\(y\ne0\)

PT (1) :\(3x^2+2y^2-4xy=11-\dfrac{1}{y}\left(2x+\dfrac{1}{y}\right)\)

\(\Leftrightarrow\left(x^2+\dfrac{2x}{y}+\dfrac{1}{y^2}\right)+2\left(x^2-2xy+y^2\right)=11\)

\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)^2+2\left(x-y\right)^2=11\)

PT (2): \(2x+\dfrac{1}{y}-y=4\)

\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)+\left(x-y\right)=4\)

Đặt \(a=x+\dfrac{1}{y};b=x-y\)

Hệ pt tt: \(\left\{{}\begin{matrix}a^2+2b^2=11\\a+b=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(4-b\right)^2+2b^2=11\\a=4-b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=\dfrac{5}{3}\\b=1\end{matrix}\right.\\a=4-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}b=\dfrac{5}{3}\\a=\dfrac{7}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}b=1\\a=3\end{matrix}\right.\end{matrix}\right.\)

TH1: \(a=\dfrac{7}{3};b=\dfrac{5}{3}\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=\dfrac{7}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=\dfrac{2}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y^2-2y+3=0\left(vn\right)\\x-y=\dfrac{5}{3}\end{matrix}\right.\)

TH2:\(a=3;b=1\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=3\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=2\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y^2-2y+1=0\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\) (thỏa mãn hệ)

Vậy hệ có nghiệm duy nhất (x;y)=(2;1).