Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x,y\ne2\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\y-2=b\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{3}{a}+\dfrac{2}{b}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{a}+\dfrac{9}{b}=15\\\dfrac{6}{a}+\dfrac{4}{b}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{5}{b}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+3=5\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow x=y=3\left(tm\right)\)
\(b,ĐK:x\ge3;y\ge1\)
Sửa: \(\sqrt{x-3}-\sqrt{y-1}=4\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-3}\ge0\\b=\sqrt{y-1}\ge0\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}a-2b=2\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3=36\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\y=5\end{matrix}\right.\)
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)
3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)
\(\left(x\ne-y;x>\dfrac{y}{2}\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7-\left(x+y\right)}{x+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7}{x+y}=2\end{matrix}\right.\)
\(đặt:\dfrac{1}{\sqrt{2x-y}}=a>0;\dfrac{1}{x+y}=b\)
\(\Rightarrow\left\{{}\begin{matrix}4a-21b=\dfrac{1}{2}\\3a+7b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\left(tm\right)\\b=\dfrac{1}{14}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{2x-y}}=\dfrac{1}{2}\\\dfrac{1}{x+y}=\dfrac{1}{14}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)(thỏa)
a.
ĐKXĐ: \(x\ne\pm y\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\2u+3v=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3u+3v=6\\2u+3v=5\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=2-u\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=1\\\dfrac{1}{x-y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+7=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-5x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)