K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
NV
28 tháng 1 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)

Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:

\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)

\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)

Thay xuống pt dưới:

\(6y+y=14\Rightarrow y=2\)

\(\Rightarrow x=4\)

26 tháng 7 2017

a)

đặt \(x^2-x=u;y^2-2y=v\)

hpt trở thành

\(\left\{{}\begin{matrix}u+v=19\\uv=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}u=\dfrac{19-\sqrt{281}}{2}\\v=\dfrac{19+\sqrt{281}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}u=\dfrac{19+\sqrt{281}}{2}\\v=\dfrac{19-\sqrt{281}}{2}\end{matrix}\right.\end{matrix}\right.\)

dễ thấy tại 2 trường hợp hpt đều vô nó nên hpt vô no

đc 1 câu

24 tháng 7 2017

Hiếu Cao Huy

31 tháng 10 2021

\(a,PT\left(1\right)\Leftrightarrow4x^2+4x+1-y^2=0\\ \Leftrightarrow\left(2x+1\right)^2-y^2=0\\ \Leftrightarrow\left(2x+y+1\right)\left(2x-y+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+y+1=0\\2x-y+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1-2x\\y=2x+1\end{matrix}\right.\)

Với \(y=-1-2x\Leftrightarrow x^2+x\left(-1-2x\right)+\left(-2x-1\right)^2=1\)

\(\Leftrightarrow x^2-x-2x^2+4x^2+4x+1=1\\ \Leftrightarrow3x^2+3x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=1\end{matrix}\right.\)

Với \(y=2x+1\Leftrightarrow x^2+x\left(2x+1\right)+\left(2x+1\right)^2=1\)

\(\Leftrightarrow x^2+2x^2+x+4x^2+4x+1=1\\ \Leftrightarrow7x^2+5x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=\dfrac{3}{7}\end{matrix}\right.\)

Vậy HPT có nghiệm \(\left(x;y\right)=\left\{\left(-1;1\right);\left(0;-1\right);\left(-\dfrac{5}{7};\dfrac{3}{7}\right)\right\}\)