K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

\(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7x=-6\\\dfrac{5\left(x+3y\right)-3\left(y-2\right)}{15}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\5x+15y-3y+6=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\12y=9-5x=9+5\cdot\dfrac{6}{7}=9+\dfrac{30}{7}=\dfrac{93}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\y=\dfrac{93}{7\cdot12}=\dfrac{93}{84}=\dfrac{31}{28}\end{matrix}\right.\)

19 tháng 4 2019

\(\hept{\begin{cases}\frac{2x-3y}{2y-5}=\frac{3x+1}{3y-4}\left(1\right)\\2\left(x-3\right)-3\left(y+2\right)=-16\left(2\right)\end{cases}}\)

Nhân chéo và chuyển vế phương trình (1) và nhân phân phối, chuyển vế phương trình (2), ta được:

\(\hept{\begin{cases}7x-11y=-17\\2x-3y=-4\end{cases}}\)

<=>\(\hept{\begin{cases}x=7\\y=6\end{cases}}\)

24 tháng 10 2015

3x^2-2xy+2y^2=7   (1)

-8=x^2+6xy-3y^2    (2)

Nhân theo vế 2 phương trình (1) và (2) ta có:   -24x^2+16xy-16y^2=7x^2+42xy-21y^2

                                                           (=) 31x^2 +26xy -5y^2=0 (=) (31x-5y)(x+y)=0 (=) 31x=5y hoặc x=-y

Thay vào (1) ta tìm được nghiệm ( 5/ căn 241; 31/ căn 241);(-5/ căn 241; -31/ căn 241);(1;-1);(-1;1)

 

11 tháng 11 2018

hpt

24 tháng 12 2019

HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)

The vao roi tinh la xong

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=2\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=4\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+10=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=5\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(-8;5)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+2\\2x+3y=m-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=m+4\\x+2\cdot\left(m+4\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2m+8=m+1\\y=m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-m-7\\y=m+4\end{matrix}\right.\)

Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì \(\left\{{}\begin{matrix}-m-7>3\\m+4< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>10\\m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -10\\m< 1\end{matrix}\right.\Leftrightarrow m< -10\)

Vậy: Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì m<-10