Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=4\\\frac{1}{\left(x+1\right)^2-1}+\frac{1}{\left(y+1\right)^2-1}=\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\frac{1}{\left(x+1\right)^2-1}+\frac{1}{\left(y+1\right)^2-1}=\frac{2}{3}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=4\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\frac{1}{a^2-1}+\frac{1}{\frac{16}{a^2}-1}=\frac{2}{3}\)
\(\Rightarrow a^4-8a^2+16=0\Rightarrow a^2=4\Rightarrow a=\pm2\Rightarrow x=...\)
b/ ĐKXĐ: ...
\(\Rightarrow\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{y}}-\sqrt{2-\frac{1}{x}}=0\)
\(\Rightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{\frac{1}{x}-\frac{1}{y}}{\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}}=0\)
\(\Rightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{y-x}{xy\sqrt{2-\frac{1}{y}}+xy\sqrt{2-\frac{1}{x}}}=0\)
\(\Rightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{\sqrt{y}+\sqrt{x}}{xy\sqrt{2-\frac{1}{y}}+xy\sqrt{2-\frac{1}{x}}}=0\right)\)
\(\Rightarrow\sqrt{y}=\sqrt{x}\Rightarrow y=x\) (ngoặc phía sau luôn dương)
Thay vào pt đầu:
\(\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}=2\)
Mặt khác áp dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
\(\Rightarrow\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}\le\sqrt{2\left(\frac{1}{x}+2-\frac{1}{x}\right)}=2\)
Dấu "=" xảy ra khi và chỉ khi:
\(\frac{1}{\sqrt{x}}=\sqrt{2-\frac{1}{x}}\Rightarrow\frac{1}{x}=2-\frac{1}{x}\Rightarrow x=1\Rightarrow y=1\)
1/PT (1) cho ta nhân tử x - y - 1:)
\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)
ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)
PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)
Dễ thấy cái ngoặc to < 0
Do đó x= y + 1
Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)
ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)
PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)
\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)
Cái ngoặc to > 0 =>...
P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(
2/ĐK: \(x\ge-y;y\ge0\)
PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)
Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).
Do đó x = y \(\ge0\)
Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)
Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)
Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)
P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
\(\hept{\begin{cases}y=2\sqrt{x-1}\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\) (ĐKXĐ: \(x\ge1;x\ge-y;\left(x;y\right)\in R\))
Thế (1) vào (2) ta được phương trình: \(\sqrt{x+2\sqrt{x-1}}=x^2-2\sqrt{x-1}\)
\(\sqrt{x-1+2\sqrt{x-1}+1}=x^2-2\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=x^2-2\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-1}+1=x^2-2\sqrt{x-1}\) (Do \(\sqrt{x-1}+1>0\))
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-3\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}\left(x+1\right)-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\\sqrt{x-1}\left(x+1\right)=3\left(3\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow x^3+x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+3x+5=0\left(vn\right)\end{cases}\Leftrightarrow}x=2\). Từ (1) suy ra: \(y=2\)
Vậy hệ PT cho có nghiệm duy nhất (x;y)=(2;2)
\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)
Vì \(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)
Làm nốt nha
\(x;y\ge0\)
Từ pt đầu ta có: \(\left(\sqrt{x}-2\right)^3=\left(\sqrt{y}\right)^3\Rightarrow\sqrt{x}-2=\sqrt{y}\)
Thế vào pt dưới:
\(x-2\sqrt{x}-1=2\left(\sqrt{x}-2\right)\)
\(\Leftrightarrow x-4\sqrt{x}+3=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow\sqrt{y}=-1\left(vn\right)\\x=9\Rightarrow\sqrt{y}=1\Rightarrow y=1\end{matrix}\right.\)
Vậy hệ có cặp nghiệm duy nhất \(\left(x;y\right)=\left(9;1\right)\)
cam on ban nha