K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

nhân chéo 2 vế của 2 pt, ta có 

\(x^3-2y^3=\left(x+4y\right)\left(6x^2-19xy+15y^2\right)\)

sau khi rút gọc thì ta được pt 

\(5x^3+5x^2y-61xy^2+62y^3=0\)

<=>\(\left(2y-x\right)\left(31y^2-15xy-5x^2\right)=0\)

đến đây thì tìm mối quan hệ giữa x và y rồi thay vào pt (2) để giải, nó sẽ trở thành pt bậc 2, nhưng sô sẽ hơi lẻ chút 

^_^

trả lời 

=0

chúc bn 

học tốt

23 tháng 10 2021

a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)

Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm

23 tháng 10 2021

b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)

Hệ này cũng vô nghiệm

Dùng cái đầu đi ạ

9 tháng 5 2020

Xét hệ phương trình \(\hept{\begin{cases}x^3-y^3-15y-14=3\left(2y^2-x\right)\left(1\right)\\4x^3+6xy+15x+3=0\left(2\right)\end{cases}}\)

Ta có: \(\left(1\right)\Leftrightarrow x^3+3x=y^3+15y+6y^2+14\)\(\Leftrightarrow x^3+3x=y^3+6y^2+12y+8+3y+6\)

\(\Leftrightarrow x^3+3x=\left(y+2\right)^3+3\left(y+2\right)\Leftrightarrow x=y+2\)(*)

Từ (2) và (*), ta có hệ phương trình: \(\hept{\begin{cases}x=y+2\\4x^3+6xy+15x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x\left(x-2\right)+15x+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x^2+3x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\8x^3+12x^2+6x+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^3=-5\\x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1-\sqrt[3]{5}}{2}\\y=\frac{-5-\sqrt[3]{5}}{2}\end{cases}}\)

Vậy hệ phương trình có một nghiệm duy nhất là \(\left(x;y\right)=\left(\frac{-1-\sqrt[3]{5}}{2};\frac{-5-\sqrt[3]{5}}{2}\right)\)

22 tháng 12 2017

\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)

\(x^3+2y^2-4y+3=0\Leftrightarrow x^2+2\left(y^2-2+1\right)+1=0\Leftrightarrow\left(y-1\right)^2=\frac{-1-x^3}{2}\)

\(\Rightarrow\frac{-1-x^3}{2}\ge0\Leftrightarrow x\ge-1\)

Để có nghiệm thì \(\Delta_y=4-4x^4\ge0\Leftrightarrow-1\le x\le1\)

Kết hợp với trên, ta có: x = -1, thế vào PT ban đầu, tính được y = 1

Vậy hệ của nghiệm là: \(\left(x,y\right)=\left(-1;1\right)\)

29 tháng 1 2018

Trong OLM,số người học lớp 9 chơi phần mềm này rất ít!!Anh có thể vào Học24h để hỏi,ở đó còn có rất nhiều thầy cô giáo sẽ giúp anh!!

19 tháng 11 2018

Phương trình trên <=> \(\left(x^2-4x+4\right)-\left(4y^2-4y+1\right)=0\Leftrightarrow\left(x-2\right)^2-\left(2y-1\right)^2=0\)

\(\Leftrightarrow\left(x-2-2y+1\right)\left(x-2+2y-1\right)=0\)

Em làm tiếp nhé!