K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)^2=-4z^2+9z-5\\\left(x-y\right)^2=4z-5\end{cases}}\)ta dễ thấy để hai phương trình có ng thì vế phải của 2 phương trình phải dương nên có hệ điều kiện :

\(\Rightarrow\hept{\begin{cases}-4z^2+9z-5\ge0\\4z-5\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4z-5\right)\left(1-z\right)\ge0\\z\ge\frac{5}{4}\end{cases}}\)

  • TH1 : \(\hept{\begin{cases}4z-5\ge0\\1-z\ge0\\z\ge\frac{5}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}z\ge\frac{5}{4}\\z\le1\\z\ge\frac{5}{4}\end{cases}}\left(vn\right)\)
  • TH2: \(\hept{\begin{cases}4z-5\le0\\1-z\le0\\4z-5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}z\le\frac{5}{4}\\z\ge1\\z\ge\frac{5}{4}\end{cases}}\Leftrightarrow z=\frac{5}{4}}\)

      Ta thế \(Z=\frac{5}{4}\)vào ta có hệ \(\hept{\begin{cases}\left(x^2+y^2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=0\\x-y=0\end{cases}\Leftrightarrow x=y=0}\)

Kết luận nghiệm \(\left(x,y,z\right)=\left(0;0;\frac{5}{4}\right)\)

28 tháng 7 2017

a) ĐK:  \(x\ge\frac{-1}{2}\)

\(x^2-\left(2x+1+2\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow x^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}-1\right)\left(x+\sqrt{2x+1}+1\right)=0\)

Vì  \(x\ge\frac{-1}{2}\)  nên  \(x+\sqrt{2x+1}+1>0\)

\(\Rightarrow x-\sqrt{2x+1}-1=0\)

\(\Leftrightarrow x-1=\sqrt{2x+1}\)

\(\Rightarrow x^2-4x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Thử lại chỉ có x = 4 thỏa mãn

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

NV
15 tháng 10 2020

Từ pt đầu: \(4z-5=\left(x-y\right)^2\ge0\Rightarrow z\ge\frac{5}{4}\) (1)

Từ pt sau: \(-4z^2+9z-5=\left(x^2+y^2\right)^2\ge0\)

\(\Rightarrow\left(z-1\right)\left(4z-5\right)\le0\Rightarrow1\le z\le\frac{5}{4}\) (2)

Từ (1) và (2) suy ra \(z=\frac{5}{4}\)

Thế vào pt ban đầu được: \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x^2+y^2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=y=0\)

15 tháng 10 2020

hiu

Dùng cái đầu đi ạ

29 tháng 12 2019

Khong mat tinh tong quat gia su \(x\ge y\ge z\)

Ta co:

\(y=\frac{2x^2}{1+x^2}\le\frac{2x^2}{2x}=x\)

\(z=\frac{3y^3}{1+y^2+y^4}\le\frac{3y^3}{3y^2}=y\)

\(\Rightarrow x\ge y\ge z\) (đúng)

Dau'=' xay ra khi \(x=y=z=1\)

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2