Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(x+2y\ge0\)
\(x+2y=\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{\left(x+y\right)^2}{3}+y^2}\ge\sqrt{\frac{\left(x+2y\right)^2}{4}}+\sqrt{\frac{\left(x+2y\right)^2}{4}}=x+2y\)
\(\Rightarrow\)\(x=2y\)\(\Rightarrow\)\(x=3-y=3-\frac{x}{2}\)\(\Rightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{x}{2}=1\end{cases}}\)
Hệ \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)\left(x-2y\right)^2=\left(x-2y\right)^2\\\sqrt{x-2y}+\sqrt{3x+2y}=4x-4\end{cases}.}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2y\right)^2\left(x+y-1\right)=0\\\sqrt{x-2y}+\sqrt{3x+2y}=4x-4\end{cases}}\)
Đến đây thì đơn giản rồi, tự làm nhé
Điều kiện tự làm nhé.
\(\hept{\begin{cases}3\sqrt{x+2y}=4-x-2y\left(1\right)\\\sqrt[3]{2x+6}+\sqrt{2y}=2\left(2\right)\end{cases}}\)
Xét (1) ta đặt \(\sqrt{x+2y}=a\ge0\)thì
\(\left(1\right)\Leftrightarrow3a=4-a^2\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=1\end{cases}}\)
\(\Rightarrow\sqrt{x+2y}=1\)
\(\Leftrightarrow x=1-2y\)
Thế vào (2) ta được
\(\sqrt[3]{2\left(1-2y\right)+6}+\sqrt{2y}=2\)
\(\Leftrightarrow\sqrt[3]{8-4y}+\sqrt{2y}=2\)
Đặt \(\hept{\begin{cases}\sqrt[3]{8-4y}=a\\\sqrt{2y}=b\ge0\end{cases}}\) thì ta có:
\(\hept{\begin{cases}a+b=2\\a^3+2b^2=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2-a\\a^3+2\left(2-a\right)^2=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2-a\\a^3+2a^2-8a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2-a\\a\left(a-2\right)\left(a+4\right)=0\end{cases}}\)
Tới đây thì bạn làm tiếp nhé
\(\hept{\begin{cases}3\sqrt{x+2y}=4-x-y\left(1\right)\\\sqrt[3]{2x+6}+\sqrt{2y}=2\left(2\right)\end{cases}}\)
ĐK : \(x\ge y\ge0\)
Giai (1) : \(3\sqrt{x+2y}=4-\left(x+2y\right)\)Ta đặt \(\sqrt{x+2y}=t\left(t>0\right)\)Phương trình trở thành
\(3t=4-t^2\Leftrightarrow t^2+3t-4=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=-4\left(L\right)\end{cases}}\)
\(\sqrt{x+2y}=1\Leftrightarrow x+2y=1\Leftrightarrow x=1-2y\)thế vào phương trình 2 ta có :
\(\sqrt[3]{2\left(1-2y\right)+6}=2-\sqrt{2y}\Leftrightarrow\sqrt[3]{8-4y}=2-\sqrt{2y}\)
Đặt \(a=\sqrt{2y}\left(a\ge0\right)\Rightarrow2y=a^2\)Phương trình trở thành;
\(\sqrt[3]{8-2a^2}=2-a\Leftrightarrow8-2a^2=8-12a-6a^2-a^3\)
\(\Leftrightarrow a\left(a^2-8a+12\right)=0\)
\(a=0\)hoặc \(a=4+\sqrt{28}\)hoặc \(a=4-\sqrt{28}\left(L\right)\)
Với \(a=0\)\(\Rightarrow y=0\Rightarrow x=1\)
Với \(a=4+\sqrt{28}\Rightarrow y=\frac{4+2\sqrt{7}}{2}=2+\sqrt{7}\Rightarrow x=-3-2\sqrt{7}\left(L\right)\)
Vậy nghiệm của hệ là \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2-4y^2-4x+4y+3=0\\x^2+2y^2-2xy+4x-4y-1=0\end{cases}.}\)
Phương trình trên <=> \(\left(x^2-4x+4\right)-\left(4y^2-4y+1\right)=0\Leftrightarrow\left(x-2\right)^2-\left(2y-1\right)^2=0\)
\(\Leftrightarrow\left(x-2-2y+1\right)\left(x-2+2y-1\right)=0\)
Em làm tiếp nhé!
\(\hept{\begin{cases}\sqrt[3]{2y+24}+\sqrt{12-x}=6\left(1\right)\\x^3+2xy^2+X-2yx^2-4y^3-2y=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)ĐK:\(x\le12\)
Đặt \(u=\sqrt[3]{2y+24}\)\(\Rightarrow u^3=2y+24\)
\(v=\sqrt{12-x}\) \(\Rightarrow v^2=12-x\)
Ta có hệ phương trình :\(\hept{\begin{cases}u+v=6\\u^3+v^2=2y-x+36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+\left(6-u\right)^2=2y-x+36\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2+36-12u=2y+x+36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2-12u=2y+x\end{cases}}\)
lop may vay