Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3y=b-a\\3x-3y=2b+c\\x+y-2z=c\end{matrix}\right.\) (nhân -1 vào 2 vế pt 1 và cộng pt 2, nhân 2 vào 2 vế pt 2 và cộng pt 3)
\(\Leftrightarrow\left\{{}\begin{matrix}0=a+b+c\\x-y=\dfrac{2b+c}{3}\\x+y-2z=c\end{matrix}\right.\)
- Nếu \(a+b+c\ne0\) hệ vô nghiệm
- Nếu \(a+b+c=0\) hệ có vô số nghiệm
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
Đễ thấy \(x=y=z=0\) là 1 nghiệm của hệ
Xét \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)
Cộng 3 phương trình vế theo vế ta được
\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}=x+y+z\)
Ta có: \(\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)
Tương tự: \(\hept{\begin{cases}\frac{2y^2}{y^2+1}\le y\\\frac{2z^2}{z^2+1}\le z\end{cases}}\)
Cộng vế theo vế ta được:
\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le x+y+z\)
Dấu = xảy ra khi \(x=y=z=1\)
Vậy nghiệm của hệ là: \(\left(x,y,z\right)=\left(0,0,0;1,1,1\right)\)
PS: Tính không làm đâu nhưng mà đồng hương nên giúp nhau vậy :D
nhìn hpt bự con thế này chắc xài BĐT giải r`, chờ mình tẹo :)
Nhận xét: từ hệ => x, y, z đông thời bằng 0 hoặc đồng thời khác 0
TH1: x = y = z =0.
=> ( 0; 0; 0 ) là 1 nghiệm.
TH2: x ; y ; z đồng thời khác 0
\(\hept{\begin{cases}\sqrt{x}\left(1+y\right)=2y\\\sqrt{y}\left(1+z\right)=2z\\\sqrt{z}\left(1+x\right)=2x\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{1}{y}+1=\frac{2}{\sqrt{x}}\\\frac{1}{z}+1=\frac{2}{\sqrt{y}}\\\frac{1}{x}+1=\frac{2}{\sqrt{z}}\end{cases}}\)
Cộng vế theo vế sau đó đưa về hằng đẳng thức để đánh giá.