Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(p=x+y+z\)
\(q=xy+zy+zx\)
\(r=xyz\)
Ta có :
\(2q=\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=4-6=-2\Rightarrow q=-1\)
Bây giờ ta sẽ đi tìm r
Đặt \(S_n=x^n+y^n+z^n\)
Khi đó \(S_0=3\)
\(S_1=-2\)
\(S_2=6\)
Ta có :
\(S_n-\left(x+y+z\right)S_{n-1}+\left(xy+yz+zx\right)S_{n-2}-xýzS_{n-3}=0\)
Suy ra \(S_n=-2S_{n-1}+S_{n-2}+rS_{n-3}\)
Lấy n = 3, ta được :
\(S_3=-2S_2+S_1+rS_0=-14+3r\)
Lấy n = 4, ta được :
\(S_4=-2S_3+S_2+rS_1=28-6r+6-2r=34-8r\)
Lấy n = 5, ta được :
\(S_5=-2S_4+S_3+rS_2=-68+16r-14+3r+6r=-82+25r\)
Mà \(S_5=-32\) nên r = 2.
Do đó x, y, z là nghiệm của phương trình
\(t^3+2t^2-t-2=0\Leftrightarrow t\in\left\{1;-1;-2\right\}\)
Vậy nghiệm của hệ là \(\left\{1;-1;-2\right\}\) và các hoán vị của nó
Đây ok chưa
Ko cop
Đặt \(\hept{\begin{cases}x+3y+2z\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{cases}}\)
Cộng \(\left(2\right)+\left(3\right)\)ta có \(\hept{\begin{cases}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{cases}}\)
Trừ \(\left(1\right)-\left(4\right)\), ta có : \(4x=4=x-1\)
Thay về hệ phương trính ta được :
\(\hept{\begin{cases}1+3y+2z=8\\2.1+2y+z=6\end{cases}}\hept{\begin{cases}y=1\\z=2\end{cases}}\)
Vậy hệ phương trình có nghiệm \(\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)
Hoàng Phong cop ở vietjjack
Tham khảo bài làm ạ:
TL:
Đưa hệ phương trình về hệ dạng tam giác bằng cách dần ẩn số, ta có:
\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\4x+4y+2z=12\\6x+2y+2z=12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\5x-y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\8x=8\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)
Vậy hệ phương trình có nghiệm (x;y;z) = (1;1;2)
HT
3 an 2 phuong trinh cai nay toan Dai Hoc ma
HPT ⇔\(\begin{cases}+z_2=2+3\iota\\z_1.z_2=-5+8\iota\end{cases}\)
z1 và z2 là 2 nghiệm phương trình :
z2-(2+3\(\iota\) )z -5+8\(\iota\) =0
ta có:
\(\Delta\) =15-20\(\iota\) =[\(\sqrt{5}\left(2-\iota\right)\)]2
nên \(\left[\begin{array}{nghiempt}=\left(1+\sqrt{5}\right)+\frac{3-\sqrt{5}}{2}\iota\\z_2=\left(1-\sqrt{5}\right)+\frac{3+\sqrt{5}}{2}\iota\end{array}\right.\)