Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{-120\left(x-y\right)}{xy}=\dfrac{2}{5}\end{matrix}\right.\) \(\Rightarrow\dfrac{-1200}{xy}=\dfrac{2}{5}\Rightarrow xy=-3000\)
Ta được hệ: \(\left\{{}\begin{matrix}x-y=10\\xy=-3000\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+10\\xy=-3000\end{matrix}\right.\)
Thay pt trên vào dưới:
\(\left(y+10\right).y=-3000\Rightarrow y^2+10y+3000=0\)
\(\Rightarrow\) pt vô nghiệm
Vậy hệ đã cho vô nghiệm
=>3/x=2/y và 96/x+1=104/y
=>2x=3y và 96/x+1=104/y
=>x/3=y/2=k và 96/x+1=104/y
=>x=3k; y=2k
\(\dfrac{96}{x}+1=\dfrac{104}{y}\)
=>\(\dfrac{96}{3k}+1=\dfrac{104}{2k}\)
=>\(\dfrac{32}{k}+1=\dfrac{52}{k}\)
=>20/k=1
=>k=20
=>x=60; y=40
\(\left\{{}\begin{matrix}\dfrac{120}{x}=\dfrac{80}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\)(1)
Đặt \(a=\dfrac{1}{x}\);\(b=\dfrac{1}{y}\)
Vậy (1)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}120a=80b\\104b-1=96a\left(2\right)\end{matrix}\right.\)
Ta có \(120a=80b\Leftrightarrow b=\dfrac{3}{2}a\)
Thay \(b=\dfrac{3}{2}a\) vào (2)\(\Leftrightarrow104.\dfrac{3}{2}a-1=96a\Leftrightarrow156a-1=96a\Leftrightarrow60a=1\Leftrightarrow a=\dfrac{1}{60}\)
Vậy \(b=\dfrac{3}{2}.a=\dfrac{3}{2}.\dfrac{1}{60}=\dfrac{1}{40}\)
Vậy \(\left\{{}\begin{matrix}a=\dfrac{1}{60}\\b=\dfrac{1}{40}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=60\\y=40\end{matrix}\right.\)
Vậy (x;y)=(60;40)
\(\left\{{}\begin{matrix}\dfrac{3}{x}=\dfrac{2}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{96}{x}=\dfrac{64}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{104}{y}-1=\dfrac{64}{y}\)
\(\Rightarrow\dfrac{40}{y}=1\Rightarrow y=40\)
\(\Rightarrow x=\dfrac{3y}{2}=60\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(60;40\right)\)
a) Ta có: \(\left\{{}\begin{matrix}\sqrt{2}x-y=3\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}x-y=3\\\sqrt{2}x+2y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=1\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}\cdot\dfrac{-1}{3}=\dfrac{4\sqrt{2}}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{2}}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{2}-2y=\dfrac{3}{4}\\2x+\dfrac{y}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-8y=3\\2x+\dfrac{1}{3}y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{25}{3}y=\dfrac{10}{3}\\2x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{5}\\2x=3+8y=3+8\cdot\dfrac{-2}{5}=-\dfrac{1}{5}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{2x-3y}{4}-\dfrac{x+y-1}{5}=2x-y-1\\\dfrac{x+y-1}{3}+\dfrac{4x-y-2}{4}=\dfrac{2x-y-3}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5\left(2x-3y\right)}{20}-\dfrac{4\left(x+y-1\right)}{20}=\dfrac{20\left(2x-y-1\right)}{20}\\\dfrac{4\left(x+y-1\right)}{12}+\dfrac{3\left(4x-y-2\right)}{12}=\dfrac{2\left(2x-y-3\right)}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y-4x-4y+4=40x-20y-20\\4x+4y-4+12x-3y-6=4x-2y-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-19y+4-40x+20y+20=0\\16x+y-10-4x+2y+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-34x+y=-24\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-102x+3y=-72\\12x+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-114x=-76\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\12\cdot\dfrac{2}{3}+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\3y=4-8=-4\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5
\(Đặt:a=\dfrac{1}{x};b=\dfrac{1}{y}\left(x,y\ne0\right)\\ \left\{{}\begin{matrix}\dfrac{108}{x}+\dfrac{63}{y}=7\\\dfrac{81}{x}+\dfrac{84}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}324a+189b=21\\324a+336b=28\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-147b=-7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-7}{-147}=\dfrac{1}{21}\\81a+84.\dfrac{1}{21}=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a=7-4=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{y}=\dfrac{1}{21}\left(TM\right)\\a=\dfrac{1}{x}=\dfrac{3}{81}=\dfrac{1}{27}\left(TM\right)\end{matrix}\right.\\ Vậy:\left\{{}\begin{matrix}x=27\\y=21\end{matrix}\right. \)
ĐKXĐ : \(xy\ne0\)
- Đặt \(x+\dfrac{1}{y}=t\)
\(\Rightarrow t^2=x^2+\dfrac{1}{y^2}+\dfrac{2x}{y}\)
\(\Rightarrow x^2+\dfrac{1}{y^2}=t^2-\dfrac{2x}{y}\)
Lại có từ PT ( II ) : \(\dfrac{x}{y}=3-\left(x+\dfrac{1}{y}\right)=3-t\)
\(\Rightarrow\dfrac{2x}{y}=6-2t\)
- Thay vào PT ( I ) ta được : \(t^2-\left(6-2t\right)+3-t=3\)
\(\Rightarrow t^2-6+2t+3-t-3=0\)
\(\Rightarrow t^2+t-6=0\)
\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)
TH1 : t = 2 .
=> \(x=y\)
Thay lại vào PT ( II ) ta được : \(x+\dfrac{1}{x}+1=3\)
\(\Rightarrow x^2+1-2x=0\)
\(\Rightarrow x=y=1\) ( TM )
TH2 : t = -3 .
=> \(x=6y\)
Thay lại vào PT ( II ) ta được : \(6y+\dfrac{1}{y}+6-3=0\)
\(\Rightarrow6y^2+1+3y=0\)
Vô nghiệm .
Vậy hệ phương trình có tập nghiệm \(S=\left\{\left(1;1\right)\right\}\)
\(ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=4\\\dfrac{2}{x}+\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+1=2\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\left(tm\right)\)
\(\left\{{}\begin{matrix}X+44=Y\\\dfrac{120}{X}+\dfrac{11}{30}=\dfrac{120}{Y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}X=Y-44\\3600Y+11XY=3600X\end{matrix}\right.\)
\(3600Y+11\left(Y-44\right)Y=3600\left(Y-44\right)\\ =11Y^2-484Y+158400 =0\)
\(\Delta'=\left(-242\right)^2-158400.11=-1683836\)
=> DO \(\Delta'>0\) nên pt vô nghiệm