Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+4z=8\\2x-y+3z=6\\2x-6y+8z=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y+z=2\\8y-4z=1\\x+y+2z=4\end{matrix}\right.\)
=>y=9/20; z=13/20; x=4-y-2z=9/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}z=23-x-y\\z=31-y-t\\z=27-t-x\\x+y+t=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-y+23=-y-t+31\\-y-t-31=-x-t+27\\x+y+t=33\\z=23-x-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+t=8\\x-y=58\\x+y+t=33\\z=23-x-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x+8\\y=x-58\\x-58+x+8+x=33\\z=23-x-y\end{matrix}\right.\)
=>x=83/3; t=107/3; y=-91/3; z=23-83/3+91/3=77/3
hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )
Cộng từng vế của các pt lại với nhau , ta có :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)
\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)
\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)
\(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=\dfrac{12}{5}\\\dfrac{yz}{y+z}=\dfrac{18}{5}\\\dfrac{zx}{z+x}=\dfrac{36}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{5}{12}\\\dfrac{y+z}{yz}=\dfrac{5}{18}\\\dfrac{z+x}{zx}=\dfrac{13}{36}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{12}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{18}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{13}{36}\end{matrix}\right.\)
Cộng vế theo vế ta thu được :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{19}{18}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{19}{36}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{4}\\\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{z}=\dfrac{1}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=9\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;6;9\right)\)
tham khảo
https://hoc24.vn/hoi-dap/tim-kiem?id=165107&q=1%2Fx%201%2F%28y%20z%29%3D1%2F3%20%201%2Fy%201%28z%20x%29%3D1%2F4%20%201%2Fz%201%2F%28x%20y%29%3D1%2F5%20%20gi%E1%BA%A3i%20h%E1%BB%87%20ph%C6%B0%C6%A1ng%20tr%C3%ACnh%20%E1%BA%A1%20m%E1%BB%8Di%20ng%C6%B0%E1%BB%9Di%20gi%E1%BA%A3i%20d%C3%B9m%20em%20v%E1%BB%9Bi%20%E1%BA%A1#:~:text=2020%20l%C3%BAc%2013%3A53-,%E2%87%94,2,-%E2%87%92y%3D23
Thay \(x=\dfrac{3}{4}y\) vào phương trình dưới, ta có:
\(\dfrac{1}{2}\left(\dfrac{3}{4}y+3\right)\left(y-2\right)-\dfrac{1}{2}.\dfrac{3}{4}y^2=9\)
\(\Leftrightarrow\dfrac{3}{8}y^2-\dfrac{3}{4}y+\dfrac{3}{2}y-3-\dfrac{3}{8}y^2=9\\ \Leftrightarrow\dfrac{3}{4}y=12\\ \Leftrightarrow y=18\Rightarrow x=12\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(12;18\right)\)
b) Áp dụng bđt Svac-xơ:
\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)
=> hpt vô nghiệm
c) Ở đây x,y,z là các số thực dương
Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{3}{8}\\ \frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\ \frac{1}{z}+\frac{1}{x}=\frac{5}{6}\end{matrix}\right.\Rightarrow 2(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{8}+\frac{3}{4}+\frac{5}{6}\)
\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{47}{48}\)
\(\Rightarrow \left\{\begin{matrix} \frac{1}{z}=\frac{47}{48}-\frac{3}{8}\\ \frac{1}{x}=\frac{47}{48}-\frac{3}{4}\\ \frac{1}{y}=\frac{47}{48}-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{48}{29}\\ y=\frac{48}{11}\\ z=\frac{48}{7}\end{matrix}\right.\)