\(\hept{\begin{cases}x+y+z=11\\2x-y+z=5\\3x+2y+z=14\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

lấy pt(1) + pt(2), ta có 

\(3x+2z=16\)(4)

lấy  2.pt(2)+pt(3), ta có 

\(7x+3z=24\)(5)

từ (4), (5), ta có hpt sau 

\(\hept{\begin{cases}3x+2z=16\\7x+3z=24\end{cases}\Leftrightarrow}\hept{\begin{cases}9x+6z=48\\14x+6z=48\end{cases}}\)

từ 2 vế của 2 pt => x=0 và tính được z=8=>y=3

^_^

11 tháng 1 2019

\(\hept{\begin{cases}x+y+z=11\left(1\right)\\2x-y+z=5\left(2\right)\\3x+2y+z=14\left(3\right)\end{cases}}\)

Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2x+2y+2z=22\left(4\right)\\3x+3y+3z=33\left(5\right)\end{cases}}\)

Lấy (4) - (2) được \(3y+z=17\left(6\right)\)

Lấy (5) - (3) được \(y+2z=19\left(7\right)\)

Từ (6)  và (7) có hệ \(\hept{\begin{cases}3y+z=17\\y+2z=19\end{cases}}\)

                          \(\Leftrightarrow\hept{\begin{cases}3y+z=17\\3y+6z=57\end{cases}}\)

                          \(\Leftrightarrow\hept{\begin{cases}3y+z=17\\5z=40\end{cases}}\)

                           \(\Leftrightarrow\hept{\begin{cases}3y=9\\z=8\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}y=3\\z=8\end{cases}}\)

Thay vào (1) được x + 3 + 8 = 11

                          <=> x = 0

Vậy ..........

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
1 tháng 3 2020

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

14 tháng 11 2017
Chịu
11 tháng 1 2022

google xin tài trợ chương trình