K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 6 2020
đk: \(x+2y\ge0\)
\(x+2y=\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{\left(x+y\right)^2}{3}+y^2}\ge\sqrt{\frac{\left(x+2y\right)^2}{4}}+\sqrt{\frac{\left(x+2y\right)^2}{4}}=x+2y\)
\(\Rightarrow\)\(x=2y\)\(\Rightarrow\)\(x=3-y=3-\frac{x}{2}\)\(\Rightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{x}{2}=1\end{cases}}\)
Cuối cùng cũng giải được câu này.
Ta có:
\(\hept{\begin{cases}x+2y=8y^2+\sqrt{1+x^2}\left(1\right)\\\sqrt{x^2-2x+4y+11}=1+\sqrt{x-4y+2}\left(2\right)\end{cases}}\)
Từ PT (1) ta có điều kiện là:
\(\hept{\begin{cases}1-x^2\ge0\\x+2y-8y^2\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le x\le1\\8y^2-2y\le x\le1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le x\le1\\-\frac{1}{4}\le y\le\frac{1}{2}\end{cases}}\)
Từ đây ta có:
\(\hept{\begin{cases}1+\sqrt{x-4y+2}\le1+\sqrt{1+1+2}=3\\\sqrt{x^2-2x+4y+11}=\sqrt{\left(x-1\right)^2+4y+10}\ge\sqrt{0-1+10}=3\end{cases}}\)
Từ đây ta có ở PT thứ 2 thì \(\hept{\begin{cases}VT\ge3\\VP\le3\end{cases}}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=1\\y=-\frac{1}{4}\end{cases}}\)
Kiểm tra lại ta thấy nghiệm này thỏa mãn hệ
Vậy hệ có nghiệm duy nhất là: \(\hept{\begin{cases}x=1\\y=-\frac{1}{4}\end{cases}}\)
saos mas khos thes?