K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Uầy, Bunyakovsky phát ra luôn nè :))

Ta có:

 \(\left(x+3y+4z+t\right)^2\le\left(1^2+3^2+4^2+1^2\right)\left(x^2+y^2+z^2+t^2\right)=27\left(x^2+y^2+z^2+t^2\right)\)

Dấu "=" xảy ra khi: \(x=\frac{y}{3}=\frac{z}{4}=t\)

Đặt \(x=\frac{y}{3}=\frac{z}{4}=t=k\left(k\inℝ\right)\)

\(\Rightarrow\hept{\begin{cases}x=t=k\\y=3k\\z=4k\end{cases}}\) thay vào ta được: \(k^3+27k^3+64k^3+k^3=93\)

\(\Leftrightarrow93k^3=93\Rightarrow k^3=1\Rightarrow k=1\)

\(\Rightarrow\hept{\begin{cases}x=t=1\\y=3\\z=4\end{cases}}\)

22 tháng 11 2018

\(\hept{\begin{cases}x+y+z=0\left(1\right)\\2x+3y+z=0\left(2\right)\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^3=26\left(3\right)\end{cases}}\)

Từ (1), (2) suy ra:

\(\hept{\begin{cases}x=-2y\\z=y\end{cases}}\)

Thê vô (3) ta được:

\(\left(-2y+1\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

\(\Leftrightarrow y^3+14y^2+27y+6=0\)

\(\Leftrightarrow\left(y+2\right)\left(y^2+12y+3\right)=0\)

1 tháng 9 2019

th1 y=z=-2

x=4

th2 y=z=-6+ căn 33

x=12-căn 33

NV
18 tháng 10 2020

Ta có:

\(\left(1.x+3.y+4.z+1.t\right)^2\le\left(1^2+3^2+4^2+1^2\right)\left(x^2+y^2+z^2+t^2\right)\)

\(\Leftrightarrow\left(x+3y+4z+t\right)^2\le27\left(x^2+y^2+z^2+t^2\right)\)

Dấu "=" xảy ra khi và chỉ khi: \(x=\frac{y}{3}=\frac{z}{4}=t\Leftrightarrow\left\{{}\begin{matrix}y=3x\\z=4x\\t=x\end{matrix}\right.\)

Thay vào pt dưới:

\(x^3+27x^3+64x^3+x^3=93\)

\(\Leftrightarrow x=1\Rightarrow\left\{{}\begin{matrix}y=3\\z=4\\t=1\end{matrix}\right.\)

10 tháng 5 2019

Hai người thợ làm trong 18 gio xong .Nếu người thứ nhất làm 4 giờ thì nghỉ , người thứ hai làm 7 giờ thì được 1/3 công việc .Hỏi nếu làm một mình trong bao lâu thì xong