Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
ĐKXĐ:...
Từ pt đầu:
\(\Leftrightarrow y^2+y\sqrt{y^2+1}=x-2y+\dfrac{1}{2}\)
\(\Leftrightarrow y^2+1+2y\sqrt{y^2+1}+y^2=2x-4y+2\)
\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=2x-4y+2\)
\(\Leftrightarrow\sqrt{y^2+1}+y=\sqrt{2x-4y+2}\)
Thế xuống pt dưới:
\(x+\sqrt{x^2-2x+5}=1+2\sqrt{y^2+1}+2y\)
\(\Leftrightarrow\left(x-1\right)+\sqrt{\left(x-1\right)^2+4}=2y+\sqrt{\left(2y\right)^2+4}\)
Do hàm \(t+\sqrt{t^2+4}\) đồng biến
\(\Leftrightarrow x-1=2y\Rightarrow x=2y+1\)
Thế vào pt đầu:
\(\left(y+1\right)^2+y\sqrt{y^2+1}=2y+\dfrac{5}{2}\)
\(\Leftrightarrow y^2+y\sqrt{y^2+1}=\dfrac{3}{2}\)
\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=4\)
\(\Leftrightarrow\sqrt{y^2+1}+y=2\)
\(\Leftrightarrow\sqrt{y^2+1}=2-y\)
\(\Leftrightarrow...\)
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\\\sqrt{2x+y}=b\end{matrix}\right.\) thì ta có:
\(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\5\left(x-y\right)+5\sqrt{2x+y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\3a^2-8b^2+5b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}a=12\\b=-7\end{matrix}\right.\)(l)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Làm biếng gõ lại:
Câu hỏi của Đỗ Thị Ánh Nguyệt - Toán lớp 10 | Học trực tuyến
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:
\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y+1}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2\\y=b^2-1\end{matrix}\right.\)
\(\Rightarrow\sqrt{2\left(a^2-b^2+1\right)^2+6\left(b^2-1\right)-2a^2+4}=a+b\)
\(\Leftrightarrow2\left(a^2-b^2+1\right)^2+6b^2-2a^2-2=\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2-b^2\right)^2+4\left(a^2-b^2\right)+2+6b^2-2a^2-2=\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2-b^2\right)^2+2a^2+2b^2=\left(a+b\right)^2\)
Ta có:
\(VT=2\left(a^2-b^2\right)^2+2a^2+2b^2\ge2a^2+2b^2\ge\left(a+b\right)^2=VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
\(\Leftrightarrow x=y+1\)
Thay vào pt đầu:
\(\sqrt{3-y}+\sqrt{y+8}=y^2+7y+6\)
\(\Leftrightarrow y^2+5y+1+\left(y+2-\sqrt{3-y}\right)+\left(y+3-\sqrt{y+8}\right)=0\)
\(\Leftrightarrow y^2+5y+1+\frac{y^2+5y+1}{y+2+\sqrt{3-y}}+\frac{y^2+5y+1}{y+3+\sqrt{y+8}}=0\)
Giải hệ phương trình sau: $\left\{\begin{matrix} \sqrt{7x+y} + \sqrt{2x+y} = 5 & \\ ... - Phương trình, hệ phương trình và bất phương trình - Diễn đàn Toán học