K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Tích chéo 2 hpt ta có:

\(6x^4-6y^4=15 x^3y-15y^3x\)

<=>\(6x^4-6y^4-15x^3y+15y^3x=0\)

<=> \(6(x^2-y^2)(x^2+y^2)-15xy (x^2-y^2)=0\)

<=>\((x^2-y^2)(6x^2+6y^2+15)=0\)

=> x2=y2

=> x=y hoặc x=-y

(*)x=y=>vô nghiệm

(*)x=-y=> vô no

Vậy hpt vô nghiệm

25 tháng 11 2017

bạn xem kĩ lại dòng 4 đi sai rồi

7 tháng 1 2022

Đây ok chưa

Ko cop

Đặt \(\hept{\begin{cases}x+3y+2z\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{cases}}\)

Cộng \(\left(2\right)+\left(3\right)\)ta có \(\hept{\begin{cases}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{cases}}\)

Trừ \(\left(1\right)-\left(4\right)\), ta có : \(4x=4=x-1\)

Thay về hệ phương trính ta được :

\(\hept{\begin{cases}1+3y+2z=8\\2.1+2y+z=6\end{cases}}\hept{\begin{cases}y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm \(\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Hoàng Phong cop ở vietjjack

Tham khảo bài làm ạ:

TL:

Đưa hệ phương trình về hệ dạng tam giác bằng cách dần ẩn số, ta có:

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\4x+4y+2z=12\\6x+2y+2z=12\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\5x-y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\8x=8\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm (x;y;z) = (1;1;2)

HT