Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABH vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HD là đường cao
nên \(AD\cdot AC=AH^2\left(2\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot HC=AH^2\left(3\right)\)
Từ (1), (2) và (3) suy ra \(AE\cdot AB=AD\cdot AC=BH\cdot HC\)
ΔCAD vuông tại C có CH là đường cao
nên AH*HD=CH^2
ΔABC vuông tại A có AH là đường cao
nên BH*HC=AH^2
AH*HD+BH*HC=CH^2+AH^2=CA^2
a: CH=8-2=6(cm)
\(AB=\sqrt{BH\cdot BC}=4\left(cm\right)\)
\(AC=4\sqrt{3}\left(cm\right)\)
\(AH=4\cdot\dfrac{4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)
a:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8cm
a: \(BC=\sqrt{6^2+8^2}=10\)
\(AH=\dfrac{6\cdot8}{10}=4.8\)
BH=3.6
CH=6.4