K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018
11 tháng 10 2015

a) chứng minh tứ giác AMCN là hình bình hành

M là trung điểm AB nên: AM = \(\frac{1}{2}\)BC

N là trung điểm CD nên: CN = \(\frac{1}{2}\)CD

Vì tứ giác ABCD là hình bình hành nên:

- AB = CD => AM = CN

- AB // CD => AM //CN

Tứ giác AMCN có cặp cạnh AM, CN song song và bằng nhau nên nó là hình bình hành.

b) chứng minh M, O, N thẳng hàng

* AC và BD là hai đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm của mỗi đường.

Do đó, O là trung điểm AC

* AC và MN là hai đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC

hay M, O, N thẳng hàng.

7 tháng 10 2017

M là trung điểm AB nên : \(AM=\frac{BC}{2}\)

N là trung điểm CD nên : \(CN=\frac{CD}{2}\)

Vì tứ giác ABCD là hình bình hành : 

- AB = CD => AM = CN

- AB // CD => AM // CN 

Tứ giác AMCN có các cặp cạnh AM , CN song song và bằng nhau nên là hình bình hành ( đpcm )

b) - AC và BD là 2 đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm mỗi đường 

=> O là trung điểm AC

- AC và MN là 2 đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC 

hay M , O , N thẳng hàng  ( đpcm )

11 tháng 10 2020

Bài 7. Cho hình bình hành ABCD , O là giao điểm của AC và BD Gọi M và N lần lượt là trung điểm của các cạnh BC và AD . Chứng minh : a ) Tứ giác AMCN là hình bình hành . b ) Ba điểm M , O , N thẳng hàng . c ) Đường chéo BD cắt AM , CN lần lượt tại I và K. Chứng minh DK = KI = IB . 

14 tháng 10 2023

loading... a) Do M là trung điểm AH (gt)

N là trung điểm DH (gt)

⇒ MN là đường trung bình của ∆ADH

⇒ MN // AD

b) Do MN // AD

⇒ MN // BC

⇒ MN // BI

Do MN là đường trung bình của ∆ADH (cmt)

⇒ MN = AD : 2 (1)

Ta có:

I là trung điểm BC (gt)

⇒ BI = BC : 2 (2)

Do ABCD là hình chữ nhật (gt)

⇒ AD = BC (3)

Từ (1), (2) và (3) ⇒ MN = BI

Tứ giác BMNI có:

MN // BI (cmt)

MN = BI (cmt)

⇒ BMNI là hình bình hành

14 tháng 10 2023

a: Xét ΔHAD có M,N lần lượt là trung điểm của HA, HD

=>MN là đường trung bình của ΔHAD

=>MN//AD và \(MN=\dfrac{AD}{2}\)

b; MN//AD

AD//BC

Do đó: MN//BC

\(MN=\dfrac{AD}{2}\)

\(AD=BC\)

\(BI=\dfrac{BC}{2}\)

Do đó: MN=BI

Xét tứ giác MNIB có

MN//IB

MN=IB

Do đó: MNIB là hình bình hành

15 tháng 7 2021

khó quá !!!!!!!!!!!!!!1

Giải chi tiết:

a) Xét tam giác AHD có:

M là trung điểm của AH (gt) 

N là trung điểm của DH (gt) 

Do đó MN là đường trung bình của tam giác AHD

Suy ra MN//AD (tính chất) (đpcm)

b) Ta có MN//AD, mà AD//BC (2 cạnh đối hình chữ nhật)  nên MN//BC hay MN//BI     Vì MN = 1212AD (tính chất đường trung bình của tam giác)    và BI = IC = 1212BC (do gt),  mà AD = BC (2 cạnh đối hình chữ nhật)  MN = BI BC hay MN//BI   Xét tứ giác BMNI có MN//BI, MN = BI (c/m trên)    Suy ra tứ giác BMNI là hình bình hành (đpcm)  

c) Ta có MN//AD và AD⊥⊥AB nên MN⊥⊥AB

Tam giác ABN có 2 đường cao là AH và NM cắt nhau tại M nên M là trực tâm của tam giác ABN. Suy ra BM⊥⊥AN.

Mà BM//IN nên AN⊥⊥NI hay ΔANIΔANI  vuông tại N (đpcm)   

# M̤̮èO̤̮×͜×L̤̮ườI̤̮◇

25 tháng 10 2021

a: Xét ΔAHD có

M là trung điểm của HA

N là trung điểm của HD

Do đó: MN là đường trung bình của ΔAHD

Suy ra: MN//AD

a: Xét ΔHAD có HM/HA=HN/HD

nên MN//AD

 b: Xét ΔHAD có MN//AD

nên MN/AD=HM/HA=1/2

=>MN=1/2AD=1/2BC

=>MN=BI

mà MN//BI

nên BMNI là hình bình hành