K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

Gọi số vở 7A,7B,7C ll là a,b,c(quyển;a,b,c∈N*)

Áp dụng tc dstbn:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+c}{2+4}=\dfrac{120}{8}=15\\ \Rightarrow\left\{{}\begin{matrix}a=30\\b=45\\c=60\end{matrix}\right.\)

Vậy ...

20 tháng 7 2023

Để chứng minh rằng 2 tia phân giác 2 góc đối đỉnh là 2 tia đối nhau, chúng ta cần sử dụng một số khái niệm và định lý trong hình học. Dưới đây là cách chứng minh:

Giả sử chúng ta có hai tia AB và AC, và chúng phân giác hai góc đối đỉnh, tức là góc BAC và góc CAD. Chúng ta cần chứng minh rằng hai tia AB và AC là hai tia đối nhau.

Để chứng minh điều này, ta sẽ sử dụng Định lý Tia Phân Giác (Bisector Theorem) và Định lý Tia Tiếp Tuyến (Alternate Segment Theorem) như sau:

Bước 1: Vẽ đường thẳng đi qua điểm A và song song với tia BC (đường thẳng đó gọi là đường thẳng d).

Bước 2: Do AB là tia phân giác góc BAC, nên theo Định lý Tia Phân Giác, ta có: AB/BD = AC/CD

Bước 3: Do AC là tia phân giác góc CAD, nên theo Định lý Tia Phân Giác, ta có: AC/CD = AB/BD

Bước 4: Từ Bước 2 và Bước 3, ta có: AB/BD = AC/CD = AB/BD Bước 5: Từ Bước 4, ta suy ra AB = AC.

Vậy, chúng ta đã chứng minh rằng hai tia AB và AC là hai tia đối nhau. Hy vọng cách chứng minh trên giúp bạn hiểu và giải đúng bài tập.

19 tháng 7 2023

Để chứng minh rằng 2 tia phân giác 2 góc đối đỉnh là 2 tia đối nhau, chúng ta cần sử dụng một số khái niệm và định lý trong hình học. Dưới đây là cách chứng minh:

Giả sử chúng ta có hai tia AB và AC, và chúng phân giác hai góc đối đỉnh, tức là góc BAC và góc CAD. Chúng ta cần chứng minh rằng hai tia AB và AC là hai tia đối nhau.

Để chứng minh điều này, ta sẽ sử dụng Định lý Tia Phân Giác (Bisector Theorem) và Định lý Tia Tiếp Tuyến (Alternate Segment Theorem) như sau:

Bước 1: Vẽ đường thẳng đi qua điểm A và song song với tia BC (đường thẳng đó gọi là đường thẳng d).

Bước 2: Do AB là tia phân giác góc BAC, nên theo Định lý Tia Phân Giác, ta có: AB/BD = AC/CD

Bước 3: Do AC là tia phân giác góc CAD, nên theo Định lý Tia Phân Giác, ta có: AC/CD = AB/BD

Bước 4: Từ Bước 2 và Bước 3, ta có: AB/BD = AC/CD = AB/BD Bước 5: Từ Bước 4, ta suy ra AB = AC.

Vậy, chúng ta đã chứng minh rằng hai tia AB và AC là hai tia đối nhau. Hy vọng cách chứng minh trên giúp bạn hiểu và giải đúng bài tập.

8 tháng 11 2021

a/ Ta có: \(\begin{matrix}a\text{ // }b\\a\perp AB\end{matrix}\Rightarrow b\perp AB\)

b/ \(\hat{ACD}+\hat{CDB}=180^o\) (trong cùng phía, a // b)

 \(\Rightarrow\hat{CDB}=180^o-\hat{ACD}=60^o\)

\(\hat{ACD}+\hat{aCD}=180^o\) (kề bù) 

\(\Rightarrow\hat{aCD}=180^o-\hat{ACD}=60^o\)

23 tháng 12 2021

các bạn ơi nhanh nhé mình cần gấp mà

23 tháng 12 2021

- Vẽ trục tọa độ Oxy và biểu diễn các điểm:

- Tứ giác ABCD là hình vuông.

26 tháng 9 2016

Đặt A = 1 + 2 + 22 + 23 + ..... + 231

=> 2A = 2 + 22 + 23 + ..... + 232

=> 2A - A = 232 - 1

=> A = 232 - 1

Vì 232 < 238 nên A < 238

26 tháng 9 2016

cái này lớp 6 làm cũng đc

đặt S làm biểu thức trên.

\(S=\)\(1+2+2^2+2^3+...+2^{31}\)

\(2S=2.\left(1+2+2^2+2^3+...+2^{31}\right)\)

\(2S=2+2^2+2^3+2^4+...+2^{32}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{32}\right)-\left(1+2+2^2+2^3+...+2^{31}\right)\)

\(S=2^{32}-1\)

VÌ \(2^{32}-1< 2^{38}\)nên \(1+2+2^2+2^3+...+2^{31}< 2^{38}\)

Bài 3:

a) Ta có: \(A-\left(9x^3+8x^2-2x-7\right)=-9x^3-8x^2+5x+11\)

\(\Leftrightarrow A=-9x^3-8x^2+5x+11+9x^3+8x^2-2x-7\)

\(\Leftrightarrow A=3x+4\)

b) Đặt A(x)=0

nên 3x+4=0

hay \(x=-\dfrac{4}{3}\)

22 tháng 7 2021

Bạn có biết giải bài hình k giúp mình với 21:00 mình phải nộp rồi 

23 tháng 12 2021

nhanh nhé các bạn ơi ai trả lời đầu tiên nhanh nhất mà còn đúng mình sẽ k cho

23 tháng 12 2021

mình sẽ k cho ok ko