Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2;
a(a + 1)(a + 2)(a + 3) + 1 = [a(a + 3)][(a + 1)(a + 2)] + 1 = (a2 + 3a)(a2 + 3a + 2) + 1 = (a2 + 3a)2 + 2(a2 + 3a) + 1 = (a2 + 3a + 1)2
Mà a(a + 1)(a + 2)(a + 3)(a + 4) thuộc N
=> a(a + 1)(a + 2)(a + 3) là số chính phương
Câu 1:
A = 7 + 72 + 73 + ................... + 7k
=> 7A = 72 + 73 + 74 + .................. + 7k + 1
=> 7A - A = (72 + 73 + 74 + ............... + 7k + 1) - (7 + 72 + 73 + .............. + 7k)
=> 6A = 7k + 1 - 7
=> 6A + 7 = 7k + 1
Vì 6A + 7 không là số chính phương => 7k + 1 không là số chính phương => k + 1 \(\ne\) 2n (n thuộc N)
=> k \(\ne\)2n - 1
Vậy k là số chẵn
bài 3 : n=4^4+...+2015
Vì 4 chia hết cho 4 => 4^4+44^44+444^444 chia hết cho 4
mà 2015 chia 4 dư 3
1 scp khi chia 4 chỉ dư 0,1 ( làm luôn câu 4 , phải chứng minh ,tìm trên mạng ấy )
Vậy n không là scp
1) Ta có:
A = 71 + 72 + 73 +...+ 7k
7A = 72 + 73 + 74 +...+ 7k + 1
=> 7A - A = 7k + 1 - 7
=> 6A + 7 = 7k + 1
Vì số chính phương luôn có mũ là chẵn nên để 6A + 7 ko là số chính phương thì k + 1 phải là số lẻ
=> k là số chẵn
=> k thuộc {0; 2; 4;...}
P > 3 => P = 3k + 1 hoặc P = 3k + 2 (k thuộc N) (vì P là số nguyên tố)
+) P = 3k + 1 => P + 8 = 3k + 9 chia hết cho 3 => P + 8 là hợp số
+) P = 3k + 2 => P + 4 = 3k + 6 chia hết cho 3 => P + 4 là hợp số (loại)
Vậy P + 8 là hợp số
a) 2A=2^2+2^3+...+2^100
A= 2A-A= 2^100-2 không phải là số chính phương
A+2 = 2^100 là số chính phương
b) 20.448 =2.2.5.296 = 298.5 > 298.4 > 2100 > A
c) 2100 - 2 = 299.2-2=833.2 -2 => n rỗng
d) ta có: 24k chia 7 dư 2
2100-2 = 24.25-2 chia hết chp 7
e) ta có: 24k chia 6 dư 4
2100-2 = 24.25-2 chia 6 dư 2
f) ta có: 24k tận cùng 6
2100-2 = 24.25-2 tận cùng 4
cau4 so chinh phuong khi chia cho 4 co so du la 0;1 nho tick cho minh nha nhe ban
cau 4 số chính phương khi chia cho 4 có số dư là 0 hoặc 1 nho tich cho minh nhe