K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

gggggggggggg

2 tháng 1 2017

cho đa thức 

P(x)= x2+bx+c

biết x4+6x2+25 và 3x4+x2+28x+5 cùng chia hết cho P(x)

NV
9 tháng 3 2022

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)

Cộng vế với vế:

\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)

Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0

\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)

Để phương trình có hai nghiệm phân biệt thì 2m-3<>0

hay m<>3/2

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)

Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)

\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)

\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)

\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)

\(\Leftrightarrow48m^2-250+85=0\)

Đến đây bạn chỉ cần giải pt bậc hai là xong rồi

9 tháng 3 2022

 \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)

\(=\left(2m-3\right)^2+1>0\)

Vậy pt có 2 nghiệm pb  

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)

Ta có \(3x_1-4x_2=11\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)

\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)

Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)

\(\Leftrightarrow m=4,125\)

17 tháng 7 2016

nhan 2 ve voi x+y roi suot hien hang dang thuc

2 tháng 8 2023

em mới lên lớp 7 nên chưa giải đc

2 tháng 8 2023

e k b lm

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Bài 4:

\(x^4y-x^4+2x^3-2x^2+2x-y=1\)

\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)

\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)

\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)

\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)

\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)

Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.

Với $(2)$

\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)

\(\Rightarrow x-1\vdots x+1\)

\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)

\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)

\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)

Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Bài 1:

\(x^2+y^2-8x+3y=-18\)

\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)

\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)

\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)

\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)

\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)

\(x\in\mathbb{Z}\Rightarrow x=4\)

Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)

Vậy.......