K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

Đáp án B

Ta có

4 tháng 4 2017

Chọn C.

26 tháng 5 2019

Chọn C.

6 tháng 6 2018

5 tháng 12 2017

Đáp án C

Mệnh đề (I) đúng.

Mệnh đề (II) sai vì log3 x2 = 2log3 x > 0 khi x > 0 nên điều kiện  ∀ x ∈ ℝ \ 0  chưa đủ.

Mệnh đ (III) sai vì loga (b.c) = loga b + loga c.

 Số mệnh đề đúng là 1.

15 tháng 2 2018

Chọn D

Xét  y   =   log a   x ; ( 0   <   a   ≠   1 ) ( C 0 ), y = f(x)(C), (C) đối xứng với ( C 0 ) qua I(2;1).

Gọi điểm  đối xứng với nhau qua điểm I(2;1), ta có:

thay vào phương trình của ( C 0 ) ta được:

Suy ra  = -2017

Như vậy, 

13 tháng 3 2017

Đáp án B

NV
18 tháng 8 2021

1.

Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN

\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ

Hàm có 4 tiệm cận

NV
18 tháng 8 2021

2.

Căn thức của hàm luôn xác định

Ta có:

\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn

\(\Rightarrow x=2\) ko phải TCĐ

\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)

\(\Rightarrow x=3\) là tiệm cận đứng duy nhất

29 tháng 1 2017

Chọn A.

Ta có 

Phương trình đã cho thành 

đây là phương trình đẳng cấp, ta có thể chia cả hai vế cho b > 0 như sau:

+) TH1.

+) TH2.

 

Do đó