Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(2x2-2x+2)+1
=(x-y)2+2(x-1)2+1
vì (x-y)2 ≥0 ∀x,y
(x-1)2 ≥ 0 ∀x
=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y
=> A ≥1
= > GTNN A = 1 khi
x-1=0
=> x=1
x-y=0
=> 1-y=0
=> y=1
vậy GTNN A =1 khi x=y=1
a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1
=\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)
\(\Rightarrow\)A dương với mọi x,y
Làm lần lượt nha!
a) Ta có:
\(A=3x^2+y^2+10x-2xy+26\)
\(=\left(x^2+2xy+y^2\right)+\left(2x^2+10x+\frac{50}{4}\right)+\frac{27}{2}\)
\(=\left(x+y\right)^2+2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{27}{2}\)
\(=\left(x+y\right)^2+2\left(x+\frac{5}{2}\right)^2+\frac{27}{2}\ge\frac{27}{2}>0\) với mọi x nên nó vô nghiệm
bạn c/m cho nó lớn hơn hoặc nhỏ hơn 0 đi mk ngại làm vì hơi nhìu ^.^ sory
bài này chỉ có hsg như tui, alibaba nguyễn, hoàng lê bảo ngọc ..... làm dc
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)
Vậy MIN A = 1 khi x = 4
b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)
Vậy MIN T = 3 khi x = 2
c) \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\)
Vậy MIN H = -4 khi x = -1
d) \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
Vậy MIN E = 8 khi x = y = 2
e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy MIN K = 1 khi x = 1/2; y = 1
f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy MIN M = 5/6 khi x = -1/3
\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)
Vậy GTNN của A là -22 khi x = 5
\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = -3
\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)
\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)
Vậy GTNN của D là 16 khi x = 2; y = 0
\(E=x^2+2y^2-2xy+4x-6y+100\)
\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)
\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)
Vậy GTNN của E là 95 khi x = -1 ; y = 1
\(F=2x^2+y^2-2xy+4x+100\)
\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)
\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)
Vậy GTNN của F là 96 khi x = -2; y = -2
\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)
Vậy GTLN của A là 39 khi x = -6
\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)
Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)
mk lm mẫu cho bạn 1 phần nhé
a) \(A=3x^2+y^2+10x-2xy+26\)
\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)
\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)
Dấu "=" xảy ra <=> \(x=y=-2,5\)
Vậy MIN A = 13,5 khi x = y = - 2,5
Cảm ơn Đường Quỳnh Giang nhiều nhé😊