Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-4-x-1)(3x-4+x+1)=0
(2x-5)(4x-3)=0
2x-5 = 0 hoặc 4x-3=0
2x=5 hoặc 4x=3
x=5/2 hoặc x=3/4
Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha
Biến đổi vế phải ta có :
( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)
= ( x+ y)( x^2 - xy+ y^2)
= x^3 + y^3
VẬy VT = VP đẳng thức được CM
Mọi người giải giúp mình bài này với ạ, cảm ơn mn nhiều, chỉ cần câu c ý chứng minh góc 90 độ thôi ạ
a: Xét tứ giác ABQN có
\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)
=>ABQN là hình chữ nhật
b: Xét ΔCAD có
DN,CH là các đường cao
DN cắt CH tại M
Do đó: M là trực tâm của ΔCAD
=>AM\(\perp\)CD
c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
=>\(HA=\sqrt{HB\cdot HC}\)
a) Xét ΔAEN có
D là trung điểm của AE
DM//EN
Do đó: M là trung điểm của AN
b) Hình thang DMCB có
E là trung điểm của DB
EN//DM//CB
Do đó: N là trung điểm của MC
Suy ra: MN=NC
mà MN=AM
nên AM=MN=NC
c) Xét hình thang DMCB có
E là trung điểm của DB
N là trung điểm của MC
Do đó: EN là đường trung bình của hình thang DMCB
Suy ra: \(EN=\dfrac{DM+CB}{2}\)
hay \(2EN=DM+BC\)
a/ Xét △AEN có:
- \(DM\text{//}EN\left(gt\right)\)
- D là trung điểm của AE \(\left(AD=AE\right)\)
=> DM là đường trung bình của △AEN. Vậy: M là trung điểm của AN (đpcm)
b/ Tứ giác BDMC có \(EN\text{ // }BC\left(gt\right)\) => Tứ giác BDMC là hình thang
Hình thang BDMC có:
- \(EN\text{ // }BC\left(gt\right)\)
- E là trung điểm của DB \(\left(DE=EB\right)\)
=> EN là đường trung bình của hình thang BDMC => N là trung điểm của MC hay \(MN=NC\)
- Mà \(AM=MN\left(cmt\right)\)
Vậy: \(AM=MN=NC\left(đpcm\right)\)
c/ - Ta có: EN là đường trung bình của hình thang BDMC (cmt)
=> \(EN=\dfrac{DM+BC}{2}\)
Vậy: \(2EN=2\cdot\dfrac{DN+BC}{2}=DN+BC\left(đpcm\right)\)
A = - \(x^2\) - 4\(x\)
A = -(\(x^2\) + 4\(x\) + 4) + 4
A = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ -(\(x\) + 2)2 ≤ 0 ⇒ - (\(x\) + 2)2 + 4 ≤ 4
⇒ Amax = 4 ⇔ \(x\) + 2 = 0 ⇔ \(x\) = -2
Kết luận giá trị lớn nhất của A là 4 xảy ra khi \(x\) = -2
B = - 9\(x^2\) + 24\(x\) - 18
B = - (9\(x^2\) - 24\(x\) + 16) - 2
B = -(3\(x\) - 4)2 - 2
(3\(x\) - 4)2 ≥ 0 ⇒ -(3\(x\) - 4)2 ≤ 0 ⇒ -(3\(x\) - 4)2 - 2 ≤ -2
Bmax = -2 ⇔ 3\(x\) - 4 = 0 ⇔ \(x\) = \(\dfrac{4}{3}\)
Kết luận giá trị lớn nhất của B là: -2 xảy ra khi \(x\) = \(\dfrac{4}{3}\)
\(A=-x^2-4x\)
\(\Rightarrow A=-x^2-4x-4+4\)
\(\Rightarrow A=-\left(x^2+4x+4\right)+4\)
\(\Rightarrow A=-\left(x+2\right)^2+4\)
mà \(-\left(x+2\right)^2\le0,\forall x\)
\(\Rightarrow A=-\left(x+2\right)^2+4\le0+4=4\)
Vậy GTLN của A là 4
\(B=-9x^2+24x-18\)
\(\Rightarrow B=-9x^2+24x-16+16-18\)
\(\Rightarrow B=-\left(9x^2-24x+16\right)+16-18\)
\(\Rightarrow B=-\left(3x-4\right)^2-2\)
mà \(-\left(3x-4\right)^2\le0,\forall x\)
\(\Rightarrow B=-\left(3x-4\right)^2-2\le0-2=-2\)
Vậy GTLN của B là -2
a: \(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{2x+6}{x+3}=2\)
a: Xét tứ giác ABNC có
O là trung điểm của AN
O là trung điểm của BC
Do đó: ABNC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
Ta có:
\(x^3-27-9\left(x-3\right)=\left(x-3\right)\left(x^2+3x+9\right)-9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9-9\right)=\left(x-3\right)\left(x^2+3x\right)\)
\(=\left(x-3\right)\left(x+3\right)x=x\left(x^2-9\right)\)
(x^3-27)-9(x-3)=x(x^2-9)
<=>(x-3)(x^2+3x+9)-9(x-3)-x(x-3)(x+3)=0
<=>(x-3)(x^2+3x-x(x+3) )=0
<=>(x-3)(x^2+3x-x^2-3x)=0
<=>(x-3)=0
<=>x=3