K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

\(A=2x^2-2x+9-2xy+y^2\)

\(\Leftrightarrow A=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+8\)

\(\Leftrightarrow A=\left(x-1\right)^2+\left(x-y\right)^2+8\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(x-y\right)^2\ge0\forall x;y\end{cases}}\)=> \(A=\left(x-1\right)^2+\left(x-y\right)^2+8\ge8\)

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x-y=0\end{cases}}\Leftrightarrow x=y=1\)

Vậy MinA = 8 <=> x = y = 1

a: =(x-y)^2+2(x-y)

=(x-y)(x-y+2)

c: =(x-3)(x+3)+(x-3)^2

=(x-3)(x+3+x-3)

=2x(x-3)

d: =(x+3)(x^2-3x+9)-4x(x+3)

=(x+3)(x^2-7x+9)

e: =(x^2-8x+7)(x^2-8x+15)-20

=(x^2-8x)^2+22(x^2-8x)+85

=(x^2-8x+17)(x^2-8x+5)

12 tháng 11 2021

\(x^2+2y^2-2xy+y=0\) đề phải như thế này chứ

12 tháng 11 2021

à, hình như tớ chép sai, vậy như thế làm thế nào vậy?

20 tháng 9 2021

\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)

\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

20 tháng 9 2021

\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)

dấu = xảy ra khi và chỉ khi y=4,x=3

31 tháng 10 2019

Câu 1 : x2+3x+3 = (x2 + 2.\(\frac{3}{2}\).x + \(\frac{9}{4}\)) - \(\frac{9}{4}\)+ 3

= (x2 + 2.\(\frac{3}{2}\).x + \(\frac{9}{4}\)) + \(\frac{3}{4}\)= ( x+ \(\frac{3}{2}\))2 + \(\frac{3}{4}\)

Ta có:( x+ \(\frac{3}{2}\))2 ≥ 0 vs mọi x

<=>( x+ \(\frac{3}{2}\))2 + \(\frac{3}{4}\)\(\frac{3}{4}\)

Dấu '' ='' xãy ra <=> x + \(\frac{3}{2}\)=0

=> x =-\(\frac{3}{2}\)

Vậy vs x =-\(\frac{3}{2}\)thì min A = \(\frac{3}{4}\)

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Bài 2:

Đặt \(A=2x-2xy-2x^2-y^2\)

\(-A=2x^2+y^2+2xy-2x=(x^2+y^2+2xy)+(x^2-2x)\)

\(=(x+y)^2+(x^2-2x+1)-1=(x+y)^2+(x-1)^2-1\)

Ta thấy:

$(x+y)^2\geq 0; (x-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow -A=(x+y)^2+(x-1)^2-1\geq -1$

$\Rightarrow A\leq 1$

Vậy $A_{\max}=1$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x+y=0\\ x-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=-1\end{matrix}\right.\)

DD
9 tháng 10 2021

2) 

\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)

\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)

Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).

Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).

\(B=2a^2+b^2+c^2-ab+ac+bc\)

\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)

\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)

\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)

Dấu \(=\)khi \(a=b=c=0\).

Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).

DD
9 tháng 10 2021

1. 

a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm) 

suy ra đpcm

b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)

c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)

d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)

\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)

27 tháng 7 2017

B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15

= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15 

( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3

25 tháng 7 2017

A= 2x^2+9y^2-6xy-6x-12y+2004

A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004

A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975

A= (x -3y +2)^2 + (x -5)^2 + 1975

( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3

D=-x^2+2xy-4y^2+2x+10y-8

D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5

D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5

D= - (x - y - 1)^2 - 3(y - 2)^2 +5 

=> Max D = 5 khi x= 3 và y=2

4 tháng 7 2017

Ta có : P = 4x(x - 1) + 11 

= 4x2 - 4x + 11

= (2x)2 - 4x + 1 + 10

= (2x - 1)2 + 10

Mà (2x - 1)2 \(\ge0\forall x\)

Nên (2x - 1)2 + 10 \(\ge10\forall x\)

Vậy GTNN của biểu thức là 10 khi và chỉ khi x = \(\frac{1}{2}\)

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :