K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

3:

ĐKXĐ: x>=0; x<>1

a: \(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)

b: \(x+\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}+1\right)+1>=0+1=1\)

=>\(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
mà 2>0

nên \(P=\dfrac{2}{x+\sqrt{x}+1}>0\forall x\) thỏa mãn ĐKXĐ

26 tháng 10 2023

thank

3 tháng 5 2023

BÀI 3:

loading...

3 tháng 5 2023

bài 4:

loading...

5:

a: góc ACB=1/2*180=90 độ

Xét ΔAKH vuông tại K và ΔACB vuông tại A có

góc KAH chung

=>ΔAKH đồng dạng với ΔACB

b: Xét ΔADC và ΔBEC có

AD=BE

góc DAC=góc EBC

AC=BC

=>ΔADC=ΔBEC

=>DC=EC

=>ΔDEC cân tại C

góc CAB=45 độ

=>góc CDE=góc CAB=45 độ

=>ΔCDE vuông cân tại C

9 tháng 9 2017

CÁi  này easy mà .-.

\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

\(\Leftrightarrow\frac{\frac{\left(7-x\right)-\left(x-5\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\frac{\frac{-2\left(x-6\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{\frac{-2}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+1\right)=0\)

\(\Rightarrow x-6=0\Rightarrow x=6\)

Bài 4: 

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

b: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC

c: Xét ΔOBA vuông tại B có BA là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

1:

AC=căn 5^2-3^2=4cm

BH=AB^2/BC=1,8cm

CH=5-1,8=3,2cm

AH=3*4/5=2,4cm

2:

ΔCBA vuông tại B có tan 40=BC/BA

=>BC/10=tan40

=>BC=8,39(m)

ΔCBD vuông tại B có tan D=BC/BD

=>BD=8,39/tan35=11,98(m)

Câu 2: 

Ta có: \(x^2-2\left(m+1\right)x+m^2+4=0\)

a=1; b=-2m-2; \(c=m^2+4\)

\(\text{Δ}=b^2-4ac\)

\(=\left(-2m-2\right)^2-4\cdot\left(m^2+4\right)\)

\(=4m^2+8m+4-4m^2-16\)

=8m-12

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow8m>12\)

hay \(m>\dfrac{3}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)=2m+2\\x_1x_2=m^2+4\end{matrix}\right.\)

Vì x1 là nghiệm của phương trình nên ta có: 

\(x_1^2-2\left(m+1\right)\cdot x_1+m^2+4=0\)

\(\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta có: \(x_1^2+2\left(m+1\right)x_2=2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2-2m^2-20=0\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-3m^2-24=0\)

\(\Leftrightarrow2\left(m+1\right)\cdot\left(2m+2\right)-3m^2-24=0\)

\(\Leftrightarrow4m^2+8m+4-3m^2-24=0\)

\(\Leftrightarrow m^2+8m-20=0\)

Đến đây bạn tự tìm m là xong rồi

23 tháng 7 2021

Cảm ơn b nha

31 tháng 5 2021
Bây h dùng pm hoidap247 rùi nhé
31 tháng 5 2021
Nhiều ngưòi on lắm