Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
19.
\(f\left(x\right)=x^2\left(3-2x\right)=x.x.\left(3-2x\right)\le\left(\dfrac{x+x+3-2x}{3}\right)^3=1\)
\(\Rightarrow\max\limits_{\left[0;\dfrac{3}{2}\right]}f\left(x\right)=1\)
20.
\(f\left(x\right)< 0;\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
21.
A là đáp án đúng, do đa thức \(f\left(x\right)=-2x^2+3x-4\) có:
\(\left\{{}\begin{matrix}a=-2< 0\\\Delta=3^2-4.\left(-2\right).\left(-4\right)=-23< 0\end{matrix}\right.\)
22.
ĐKXĐ: \(4-x^2\le0\Rightarrow\left(2-x\right)\left(2+x\right)\le0\)
\(\Rightarrow-2\le x\le2\Rightarrow D=\left[-2;2\right]\)
23.
\(f\left(x\right)>0;\forall x\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(2m-3\right)^2-\left(4m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-16m+12< 0\)
\(\Rightarrow1< m< 3\)
10.D
Giải thích: Số chính phương là những số có chữ số tận cùng là 0,1,4,5,6,9.
Giả sử (2) là mệnh đề đúng: chữ số tận cùng của n là 4
Xét vào (1) thì là mệnh đề sai vì số tận cùng của n là 4 + 8 = 2 (Không phải số cp)
Xét vào (3) thì là mệnh đề sai vì số tận cùng của n là 4 - 1 = 3 (Không phải số cp)
Nhưng theo đề thì có 1 mệnh đề sai và 2 mệnh đề đúng.
Vậy giả sử nêu trên là sai. => Chọn D
ĐK: \(x\ge0\)
Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)
Khi đó bất phương trình tương đương:
\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)
\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)
\(\Delta'=4-m\)
a. Phương trình vô nghiệm khi:
\(4-m< 0\Rightarrow m>4\)
b. Phương trình có 2 nghiệm pb khi: \(4-m>0\Rightarrow m< 4\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)
Không mất tính tổng quát, giả sử \(x_1=2x_2\)
\(\Rightarrow2x_2+x_2=4\Rightarrow x_2=\dfrac{4}{3}\Rightarrow x_1=\dfrac{8}{3}\)
\(\Rightarrow m=x_1x_2=\dfrac{32}{9}\)