K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

Câu 34:

|vmax| = A.ω = 31,4 (cm/s) \(\Rightarrow\) A = \(\dfrac{\left|v_{max}\right|}{\omega}\)

Ta có công thức: vmin = \(\dfrac{S_{min}}{\Delta t}\)(*)

vì Δt < \(\dfrac{T}{2}\) (\(\dfrac{T}{6}\) < \(\dfrac{T}{2}\))

\(\Rightarrow\)Smin = 2.A. (1 - cos \(\dfrac{\Delta\phi}{2}\)) (Δϕ là góc ở tâm mà bán kính quét được qua khoảng thời gian Δt ấy, có công thức: Δϕ = ω. Δt)

Mấu chốt của bài này là bạn phải đưa biểu thức (*) về chỉ còn một ẩn là |vmax| thôi nhé! (Sử dụng công thức ω = \(\dfrac{2\pi}{T}\) để rút gọn)

(*) \(\Leftrightarrow\) vmin \(\dfrac{2.A.\left[1-cos\left(\dfrac{\omega.\Delta t}{2}\right)\right]}{\Delta t}\)

\(\Leftrightarrow\) vmin = \(\dfrac{2.\dfrac{\left|v_{max}\right|}{\omega}.\left[1-cos\left(\omega.\dfrac{T}{6.2}\right)\right]}{\dfrac{T}{6}}\) (ở bước này là mình thay các biểu thức trên kia vào nhé)

\(\Leftrightarrow\) vmin = \(\dfrac{2.\left|v_{max}\right|\left[1-cos\left(\dfrac{2\pi}{T}.\dfrac{T}{12}\right)\right]}{\dfrac{T}{6}.\dfrac{2\pi}{T}}\)

Giờ thì ngồi rút gọn T thôi nào!

\(\Leftrightarrow\) vmin = \(\dfrac{2\left|v_{max}\right|.\left(1-cos\dfrac{\pi}{6}\right)}{\dfrac{\pi}{3}}\)

Thay |vmax| = 31,4 và π = 3,14. *Lưu ý là cos \(\dfrac{\pi}{6}\) = \(\dfrac{\sqrt{3}}{2}\) luôn nha (đừng thay π = 3,14 vào đấy!)

\(\Rightarrow\) vmin = \(\dfrac{6.31,4.\left(1-\dfrac{\sqrt{3}}{2}\right)}{3,14}\)    = 8,038475773... (cm/s) \(\approx\) 8,04 (cm/s)

Vậy đáp án cần tìm là A. 8,04 cm/s

Có gì thắc mắc cứ hỏi nha. Chúc bạn học tốt!

 

 

1 tháng 7 2021

Bạn tự check lại các phép tính toán và giải nốt pt để tìm L.  Mình đang lười nên mình ko làm đâu :v

4 tháng 7 2021

2uAN+3uMB chính là tổng hợp dao động đh, bạn lưu ý điều này