K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left(\dfrac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{a-4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

 

1 tháng 1 2022

undefined

22 tháng 10 2021

Bài 1: 

a: \(A=2\sqrt{3}-\sqrt{27}+\sqrt{4-2\sqrt{3}}\)

\(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}-1\)

=-1

22 tháng 10 2021

đọc kĩ đề , chỉ cần làm câu 4 ý b thôi

 

a) Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

15 tháng 5 2021

 làm câu b đc ko ạ

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

NV
7 tháng 2 2022

Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?

Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)

Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)

Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)

Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)

Tam giác vuông \(IJO\)\(IJ^2=OI^2-JO^2\)

\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)

Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)

Do O là trung điểm BC nên \(IO\perp BC\)

\(\Rightarrow OI^2+OC^2=IC^2\) 

Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)

Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)

\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)

Thế vào (3):

\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)

NV
7 tháng 2 2022

Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c

22 tháng 12 2023

Câu 61:

a: \(B=\dfrac{3}{\sqrt{x}-2}+\dfrac{4}{\sqrt{x}+2}-\dfrac{12}{x-4}\)

\(=\dfrac{3}{\sqrt{x}-2}+\dfrac{4}{\sqrt{x}+2}-\dfrac{12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\left(\sqrt{x}+2\right)+4\left(\sqrt{x}-2\right)-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}+6+4\sqrt{x}-8-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{7\sqrt{x}-14}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{7\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{7}{\sqrt{x}+2}\)

b: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{1-x}\)

\(=\dfrac{\left(\sqrt{x}+1\right)}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

Câu 60
Khi a=2 thì hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}\left(2^2-1\right)x+y=3\\2x-y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)

25 tháng 12 2023

Dạ Em cảm ơn ạ

 

26 tháng 11 2023

a: loading...

b: Thay y=-x vào (d2), ta được:

\(\dfrac{1}{2}x+3=-x\)

=>\(\dfrac{3}{2}x=-3\)

=>\(x=-3:\dfrac{3}{2}=-2\)

=>y=-(-2)=2

Thay x=-2 và y=2 vào (d3), ta được:

\(b+2\cdot\left(-2\right)=2\)

=>b-4=2

=>b=6

14 tháng 11 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HC\cdot3=6^2=36\)

=>HC=12(cm)

BC=BH+HC

=3+12

=15(cm)

b: Xét tứ giác AHBE có

\(\widehat{AHB}=\widehat{AEB}=\widehat{HBE}=90^0\)

Do đó: AHBE là hình chữ nhật

=>HE=BA

Xét ΔBKC vuông tại B có BA là đường cao

nên \(BA^2=AK\cdot AC\)

=>\(HE^2=AK\cdot AC\)

Xét ΔABK vuông tại A có AE là đường cao

nên \(BE\cdot EK=AE^2\)

\(BH\cdot BC+BE\cdot EK\)

\(=AE^2+AH^2\)

\(=AE^2+EB^2\)

\(=AB^2\)

\(=AK\cdot AC\)

c: Ta có: AHBE là hình chữ nhật

=>\(S_{AHBE}=AH\cdot AE\)

=>\(S_{AHBE}< =AH^2+AE^2=AB^2\)

Dấu '=' xảy ra khi AH=AE

Hình chữ nhật AHBE có AH=AE
nên AHBE là hình vuông

=>BA là phân giác của \(\widehat{HBE}\)

=>\(\widehat{ABC}=45^0\)

Xét ΔABC vuông tại A có \(\widehat{ABC}=45^0\)

nên ΔABC vuông cân tại A

Ta có: ΔABC vuông cân tại A

mà AH là đường cao

nên H là trung điểm của BC