Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nó chỉ đơn giản là tên đường thẳng thôi, giống như câu d người ta đặt trên đường thẳng \(3x+2y-1=0\) là \(\Delta_1\) vậy đó
Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta'=9\left(m-1\right)^2-9m\left(m-3\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ge-1\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{6\left(m-1\right)}{m}\\x_1x_2=\dfrac{9\left(m-3\right)}{m}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Rightarrow\dfrac{6\left(m-1\right)}{m}=\dfrac{9\left(m-3\right)}{m}\)
\(\Rightarrow6\left(m-1\right)=9\left(m-3\right)\)
\(\Rightarrow m=7\)
A đúng
Lời giải:
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng cộng mẫu:
( \(\frac{a_1^2}{x_1}+\frac{a_2^2}{x_2}+...+\frac{a_n^2}{x_n}\geq \frac{(a_1+a_2+...+a_n)^2}{x_1+x_2+...+x_n}\)- Bản chất chính là BĐT Cauchy-Schwarz thu gọn)
\(\text{VT}=\frac{a^{4030}}{a^{2014}(b+c-a)}+\frac{b^{4030}}{b^{2014}(a+c-b)}+\frac{c^{4030}}{c^{2014}(a+b-c)}\geq\frac{(a^{2015}+b^{2015}+c^{2015})^2}{a^{2014}(b+c)+b^{2014}(c+a)+c^{2014}(a+b)-(a^{2015}+b^{2015}+c^{2015})} \)
Giờ chỉ cần chứng minh \(a^{2014}(b+c)+b^{2014}(c+a)+c^{2014}(a+b)-(a^{2015}+b^{2015}+c^{2015})\leq a^{2015}+b^{2015}+c^{2015}\)
\(\Leftrightarrow (a-b)(a^{2014}-b^{2014})+(b-c)(b^{2014}-c^{2014})+(c-a)(c^{2014}-a^{2014})\geq 0\)
\(\Leftrightarrow (a-b)^2(a^{2013}+....+b^{2013})+(b-c)^2(b^{2013}+...+c^{2013})+(c-a)^2(c^{2013}+...+a^{2013})\geq 0\)
BĐT này luôn đúng với $a,b,c>0$
Do đó \(\text{VT}\geq \frac{a^{2015}+b^{2015}+c^{2015})^2}{a^{2015}+b^{2015}+c^{2015}}=a^{2015}+b^{2015}+c^{2015}\) ( đpcm)
Dấu $=$ xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT Cauchy-Schwarz:
\(17\left ( a^2+\frac{1}{b^2} \right )=\left ( a^2+\frac{1}{b^2} \right )(1+4^2)\geq \left ( a+\frac{4}{b} \right )^2\)
\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{4}{b}}{\sqrt{17}}\). Tương tự với các phân thức còn lại......
\(S\geq \frac{1}{\sqrt{17}}\left(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng cộng mẫu:
\(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\geq \frac{36}{a+b+c}\Rightarrow S\geq \frac{1}{\sqrt{17}}\left(a+b+c+\frac{36}{a+b+c}\right)\)
Áp dụng BĐT Am-Gm: \(a+b+c+\frac{9}{4(a+b+c)}\geq 2\sqrt{\frac{9}{4}}=3\)
Mặt khác, vì $a+b+c\leq\frac{3}{2}$ nên \(\frac{135}{4(a+b+c)}\geq \frac{45}{2}\)
\(\Rightarrow S\geq \frac{51}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)
Vậy \(S_{\min}=\frac{3\sqrt{17}}{2}\Leftrightarrow (a,b,c)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right))\)
REFER
C1 Đường tròn lượng giác là đường tròn định hướng có tâm là gốc O của hệ toạ độ trực chuẩn có bán kính bằng 1
C2 \(\tan-\dfrac{\pi}{3}\times\dfrac{180}{\pi}=-\sqrt{3}\)